精英家教网 > 初中数学 > 题目详情

【题目】某住宅小区在住宅建设时留下一块1798平方米的矩形空地,准备建一个矩形的露天游泳池,设计图如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其他三侧各保留2米宽的道路及1米宽的绿化带.

(1)请你计算出游泳池的长和宽;

(2)已知贴1平方米瓷砖需费用50元,若游泳池深3米,现要把池底和池壁(5个面)都贴上瓷砖,共需要费用多少元?

【答案】(1)游泳池的长为50米,宽为25;(2)共需要费用85000元.

【解析】

(1)可先设出游泳池的长和宽,然后根据条件表示出矩形空地的长和宽,然后根据矩形空地的面积是1798平方米来列方程求解.

(2)本题的关键是求出5个面的面积,有了(1)的长和宽,告诉了游泳池的高,可以用矩形的面积=×宽计算出着5个面的面积,也就求出了贴瓷砖的面积,从而得出贴上瓷砖后共需要的费用.

解:(1)设游泳池的宽为x米,则长为2x米.

根据题意,得

(2x+2+5+1)·(x+2+2+1+1)=1798,

整理,得x2+10x-875=0,

解得x1=-35(不合题意,舍去),x2=25.

∴2x=2×25=50.

答:游泳池的长为50米,宽为25米.

(2)×50=(450+1250)×50=1700×50=85000().

答:共需要费用85000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,在RtABC中,∠ACB=90°AE平分∠BACBC于点EDAC上的点,BE=DE

1)求证:∠B+EDA=180°

2)求 的值。.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数y=x2+mx+1,当0x≤2时的函数值总是非负数,则实数m的取值范围为(  )

A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4m≥﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).

(1)求这条直线的函数解析式;

(2)求这条抛物线的函数解析式;

(3)若这条直线上有P点,使SPAB=12,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

我们可以通过下列步骤估计的大小.

第一步:因为12=122=4124,所以12

第二步:通过取12的平均数缩小所在的范围:取

因为1.52=2.2522.25,所以11.5

1)请仿照第一步,通过运算,确定界于哪两个相邻的整数之间?

2)在11.5的基础上,重复应用第二步中取平均数的方法,将所在的范围缩小至mn,使得nm=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有0102030的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;

2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°EF分别是BCCD上的点.且BE+DF=EF.试求∠EAF度数.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明ABE≌△ADG,再证明AEF≌△AGF,可得求出∠EAF度数,他求出的∠EAF度数应是 .请你根据他的思路完成论证过程.

(2)如图2,若在四边形ABCD中,AB=AD,∠B+D=180°EF分别是BCCD上的点,试探究当∠EAF与∠BAD满足什么关系时有BE+DF=EF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB8,射线BGAB,P为射线BG上一点,连接AP,APCPAP=CP,连接ACPD平分∠APC,CD与点BAP两侧,在线段DP取一点E,使∠EAP=∠BAP,连接CE与线段AB相交于点F(F与点AB不重合).

(1)求证:AEP≌△CEP;

(2)判断CFAB的位置关系,并说明理由;

(3)求△AEF的周长.

查看答案和解析>>

同步练习册答案