【题目】如图,在平面直角坐标系中,正比例函数y=kx(k>0)与反比例函数y= 的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为(m,0).其中m>0.
(1)四边形ABCD的是 . (填写四边形ABCD的形状)
(2)当点A的坐标为(n,3)时,四边形ABCD是矩形,求m,n的值.
(3)试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.
【答案】
(1)平行四边形
(2)
解:∵点A(n,3)在反比例函数y= 的图象上,
∴3n=3,解得:n=1,
∴点A(1,3),
∴OA= .
∵四边形ABCD为矩形,
∴OA= AC,OB= BD,AC=BD,
∴OB=OA= ,
∴m= .
(3)
解:四边形ABCD不可能成为菱形,理由如下:
∵点A在第一象限内,点B在x轴正半轴上,
∴∠AOB<90°,
∴AC与BD不可能互相垂直,
∴四边形ABCD不可能成为菱形
【解析】解:(1)∵正比例函数y=kx(k>0)与反比例函数y= 的图象分别交于A、C两点,
∴点A、C关于原点O成中心对称,
∵点B与点D关于坐标原点O成中心对称,
∴对角线BD、AC互相平分,
∴四边形ABCD的是平行四边形.
所以答案是:平行四边形.
科目:初中数学 来源: 题型:
【题目】为了迎接第二届“环泉州湾国际自行车赛”的到来,泉州台商投资区需要制作宣传单.有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元则六折优惠.且甲乙两厂都规定:一次印刷数量至少是500份.
(1)若印刷数量为份(,且是整数),请你分别写出两个印刷厂收费的代数式;
(2)如果比赛宣传单需要印刷1100份,应选择哪个厂家?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,点P为BC上任意一点(可与点B或C重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD∥BC,∠ABC=60,AB=DC=2,AD=1,R、P分别是BC、CD边上的动点(点R、B不重合,点P、C不重合),E、F分别是AP、RP的中点,设BR=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB>AC,射线AM平分∠BAC.
(1)设AM交BC于点D,DE⊥AB于点E,DF⊥AC于点F,连接EF.有以下三种“判断”:
判断1:AD垂直平分EF.
判断2:EF垂直平分AD.
判断3:AD与EF互相垂直平分.
你同意哪个“判断”?简述理由;
(2)若射线AM上有一点N到△ABC的顶点B,C的距离相等,连接NB,NC.
①请指出△NBC的形状,并说明理由;
②当AB=11,AC=7时,求四边形ABNC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在5×5正方形ABCD中,每个小正方形的边长都是1.
(1)如图(2),连结各条边上的四个点E,F,G,H可得到一个新的正方形,那么这个新正方形的边长是 ;
(2)将新正方形做如下变换,点E向D点运动,同时点F以相同的速度向点A运动,其他两点也做相同变化;当E,F,G,H各点分别运动到AD,AB,BC,CD的什么位置时,所得的新正方形面积是13,在图(3)中画出新正方形,此时AE= ;
(3)在图(1)中作出一条以A为端点的线段AP,使得线段AP=,且点P必须落在横纵线的交叉点上。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.
(1)求出此时点A到岛礁C的距离;
(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com