精英家教网 > 初中数学 > 题目详情

【题目】如图,点D在AB上,点E在AC上,BE、CD相交于点O.

(1)三角形的外角等于与它不相邻的两个内角的______,若∠A=45°,∠B=30°,则∠BEC=______;

(2)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;

(3)试猜想∠BOC与∠A、∠B、∠C之间的关系,并证明你猜想的正确性。

【答案】(1)和,75°;(2)30°;(3)∠BOC=∠A+∠B+∠C ,理由见解析

【解析】

1)直接利用三角形的外角的性质求出;

2)先利用三角形的外角的性质求出∠BDO=80°,最后用三角形的内角和定理即可得出结论;
2)利用三角形的外角的性质即可得出结论.

1 三角形的外角等于与它不相邻的两个内角的和,

∵∠A=45°∠B=30°

2∵∠A=50°∠C=30°

∵∠BOD=70°

BOD中,∠B=180°- ∠BOD- ∠BDO

=180°-70°-80°

=30°

3∠BOC=∠A+∠B+∠C ,理由如下:

∵∠BOC=∠B+∠BDO∠BDO=∠A+∠C

∴∠BOC=∠A+∠B+∠C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知AC=AE=CD,BACACB的角平分线交于点F,连DF,EF,分别交ABBCMN,已知点FABC三边距离为3,则BMN的周长为____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明用大小相同高度为2cm10块小长方体垒了两堵与地面垂直的木墙AD BE,当他将一个等腰直角三角板ABC如图垂直放入时,直角顶点C正好在水平线DE上,锐角顶点AB分别与木墙的顶端重合,求两堵木墙之间的距离。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.

(1)求证:△ACE≌△BCF;

(2)若∠BFE=60°,求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D90°ABCD5ADBC13,点E为射线AD上的一个动点,若ABEA'BE关于直线BE对称,当A'BC为直角三角形时,AE的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠BDA=CDA,则不一定能使ABD≌△ACD的条件是(  )

A. BD=DC B. AB=AC C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在五边形数的证明上.如图为前几个五边形数的对应图形,请据此推断,第10五边形数应该为(  ),第2018五边形数的奇偶性为(  )

A. 145;偶数 B. 145;奇数 C. 176;偶数 D. 176;奇数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 ABC中,AB=AC BAC=90°,直角∠ EPF的顶点PBC中点,两边PEPF分别交ABAC于点EF,给出以下四个结论:①AE=CF②△ EPF是等腰直角三角形; 2S四边形AEPF=S ABCBE+CF=EF.当∠ EPF ABC内绕顶点P旋转时(点EAB重合).上述结论中始终正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案