精英家教网 > 初中数学 > 题目详情
14.在菱形ABCD中,对角线AC,BD相交于O,且AB=2cm,∠ABC=60°,则菱形ABCD的面积为2$\sqrt{3}$cm2

分析 由已知条件易求∠BAD=120°,菱形的每条对角线平分一组对角,则∠BAO=$\frac{1}{2}$∠BAD=60°,即△ABC是等边三角形,由此可求得AC=AB=2cm;由菱形的性质可知:菱形的对角线互相垂直平分,在Rt△BAO中,已知AB、AO的长,由勾股定理求得BO的长,进而可得出菱形ABCD的面积.

解答 解:∵四边形ABCD是菱形,∠ABC=60°,
∴∠BAD=120°,
∴∠BAO=$\frac{1}{2}$∠BAD=$\frac{1}{2}$×120°=60°,
又在△ABC中,AB=BC,
∴∠BCA=∠BAC=60°,
∠ABC=180°-∠BCA-∠BAC=60°,
∴△ABC为等边三角形,
∴AC=AB=2cm,
在菱形ABCD中,AC⊥BD,
∴△AOB为直角三角形,
∴OB2=AB2-AO2
∴OB=$\sqrt{3}$cm,
∴BD=2BO=2$\sqrt{3}$cm,
∴S菱形ABCD=$\frac{1}{2}$AC•BD=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$cm2

点评 本题主要考查的是菱形的性质:菱形的四条边都相等;对角线互相垂直平分;每条对角线平分一组对角.熟记菱形的面积等于对角线乘积的一半是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,设一个三角形的三边分别是3,1-3m,8.
(1)求m的取值范围;
(2)是否存在整数m使三角形的周长为偶数?若存在,求出三角形的周长;若不存在,说明理由;
(3)如图,在(2)的条件下,当AB=8,AC=1-3m,BC=3时,若D是AB的中点,连CD,P是CD上动点(不与C,D重合,当P在线段CD上运动时,有两个式子):①$\frac{{S}_{△ABC}}{{S}_{△APC}+{S}_{△BPD}}$;②$\frac{PA+PB}{AB}$,其中有一个的值不变,另一个的值改变.问题:
A.请判断出谁不变,谁改变;
B.若不变的求出其值,若改变的求出变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市24000名初中生视力状况进行了一次抽样调查,如图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中所提供的信息,回答下列问题:
(1)本次调查共抽测了240名学生,占该市初中生总数的百分比是1%;
(2)从左到右第四小组的频率是0.25;
(3)如果视力在4.9以上均属正常,则全市约有多少名初中生的视力正常,视力正常的合格率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在向红星镇居民介绍王家庄位置的时候,我们可以这样说:如图1,在以红星镇为原点,正东方向为x轴正方向,正北方向为y轴正方向的平面直角坐标系(1单位长度表示的实际距离为1km)中,王家庄的坐标为(5,5);也可以说,王家庄在红星镇东北方向$\sqrt{50}$km的地方.

还有一种方法广泛应用于航海、航空、气象、军事等领域.如图2:在红星镇所建的雷达站O的雷达显示屏上,把周角每15°分成一份,正东方向为0°,相邻两圆之间的距离为1个单位长度(1单位长度表示的实际距离为1km),现发现2个目标,我们约定用(10,15°)表示点M在雷达显示器上的坐标,则:
(1)点N可表示为(8,135°);王家庄位置可表示为($\sqrt{50}$,45°);点N关于雷达站点0成中心对称的点P的坐标为(8,315°);
(2)S△OMP=20$\sqrt{3}$km2
(3)若有一家大型超市A在图中(4,30°)的地方,请直接标出点A,并将超市A与雷达站O连接,现准备在雷达站周围建立便民服务店B,使得△ABO为底角30°的等腰三角形,请直接写出B点在雷达显示屏上的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:
(1)($\frac{\sqrt{8}}{2}$-$\sqrt{\frac{1}{8}}$)•$\sqrt{2}$          
(2)(x2-2xy+y2)÷$\frac{{x}^{2}-{y}^{2}}{x+y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.当m=-3时,关于x的方程$\frac{x}{x-3}$=2-$\frac{m}{x-3}$无解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若点P从点B出发,以2cm/s的速度在BC所在的直线上运动.设点P的运动时间为t,试求当t为何值时,△ACP是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→D(+4,+2),B→C(+2,0),C→A(-3,-4);
(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;
(3)若贝贝从A处去寻找妮妮的行走路线依次为(+1,+2),(+2,-1),(-2,+3),(1,-2),请在图中标出妮妮的位置E点.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学数学知识找到破译密码的“钥匙”,目前,已破译处“正做数学”的真实意义是“”祝你成功,若“正”所处的位置为(x,y),你找到的密码钥匙是(x-1,y-2),破译的“今天考试”真实意思是努力发挥.

查看答案和解析>>

同步练习册答案