【题目】已知一次函数y=kx+b的图象经过点(2,3),与y轴交于点B(0,4),与x轴交于点A.
(1)一次函数的表达式为;
(2)方程kx+b=0的解为;
(3)求该函数图象与两坐标轴围成的三角形的面积.
【答案】
(1)y=- x+4
(2)x=8
(3)S△AOB= ×4×8=16
【解析】解 ;(1)将点(2,3)与点B(0,4)分别代入y=kx+b得 :
解得
∴一次函数的表达式为 ;y=-x+4 ,
(2)把y=0代入y=-x+4 得;x=8 , 从而得出方程kx+b=0的解为x=8 ;
(3)∵A(8,0) ;B(0,4) ,
∴ OA=8 , OB=4 ,
∴S△AOB= OA·OB= ×4×8=16 .
(1)用待定系数法求出该函数的解析式;
(2)把把y=0代入y=-x+4 得;x=8 , 从而得出方程kx+b=0的解;
(3)根据A,B两点的坐标,求出OA,OB的长度,再根据三角形的面积计算公式计算出结果即可。
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB="AC=" 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.
(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2+bx+3经过点A(3,0),G(﹣1,0)两点.
(1)求这个二次函数的解析式;
(2)若点M时抛物线在第一象限图象上的一点,求△ABM面积的最大值;
(3)抛物线的对称轴交x轴于点P,过点E(0, )作x轴的平行线,交AB于点F,是否存在着点Q,使得△FEQ∽△BEP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
①以a2 , b2 , c2的长为边的三条线段能组成一个三角形;②以,,的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以,,的长为边的三条线段能组成直角三角形,正确结论的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com