【题目】关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ
cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ
tan(α+β)=(1﹣tanαtanβ≠0)
tan(α﹣β)=(1+tanαtanβ≠0)
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
如:tan105°=tan(45°+60°)=
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物AB和DC的水平距离BC为24米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.
【答案】48m
【解析】试题分析:首先根据题目中给出的公式求出tan75°和tan15°的值,过A作AE⊥CD交CD延长线于E,根据Rt△AEC的三角形函数值得出CE的值,然后根据Rt△AED的三角形函数值得出DE的长度,最后根据CD=CE-DE得出答案.
试题解析:解:∵tan75°=tan(30°+45°)===2+,
tan15°=tan(45°﹣30°)==2﹣,
如图,过A作AE⊥CD交CD延长线于E, 在Rt△AEC中,AE=BC=24m,∠CAE=75°,
∴tan75°=, ∴CE=AEtan75°=(48+24)m,
在Rt△AED中,tan∠DAE=tan15°=, ∴DE=AEtan15°=48﹣24m,
∴CD=CE﹣DE=48m.
答:建筑物CD的高度是48m.
科目:初中数学 来源: 题型:
【题目】甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是( )
(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C在x轴正半轴上,抛物线(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
(1)求△ABC的面积是____;
(2)求直线AB的表达式;
(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
则下列关于这组数据的说法,正确的是( )
A.众数是2.3B.平均数是2.4
C.中位数是2.5D.方差是0.01
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
小明和小丽共同探究一道数学题:
如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索发现
小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.
小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.
选择小明、小丽其中一人的方法解决问题情境中的问题.
类比应用
如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年深圳市创建文明城市期间,某区教育局为了了解全区中学生对课外体育运动项目的喜欢程度,随机抽取了某校八年级部分学生进行问卷调查(每人限选一种体育运动项目).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)这次活动一共调查了 名学生;
(2)在扇形统计图中,“跳绳”所在扇形圆心角等于 度;
(3)补全条形统计图;
(4)若该校有学生2000人, 请你估计该校喜欢“足球”的学生约有 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com