精英家教网 > 初中数学 > 题目详情
17.在平行四边形ABCD中,BE⊥AD于点E,BF⊥CD于点F,若∠EBF=60°,且AE=2,DF=1,则EC的长为4$\sqrt{3}$.

分析 由平行四边形的性质和已知条件得出∠ABE=∠CBF=30°,得出CD=AB=2AE=4,由勾股定理求出BE,得出BC=2CF=6,再根据勾股定理即可求出EC.

解答 解:∵四边形ABCD是平行四边形,
∴AB∥CD,BC∥AD,AB=CD,
∵BE⊥AD,BF⊥CD,
∴BE⊥BC,BF⊥AB,
∴∠ABF=∠EBC=90°,
∵∠EBF=60°,
∴∠ABE=∠CBF=30°,
∵AE=2,DF=1,
∴CD=AB=2AE=4,
∴BE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,CF=4-1=3,
∴BC=2CF=6,
∴EC=$\sqrt{B{C}^{2}+B{E}^{2}}$=$\sqrt{{6}^{2}+(2\sqrt{3})^{2}}$=4$\sqrt{3}$;
故答案为:4$\sqrt{3}$.

点评 本题考查了平行四边形的性质、勾股定理、含30°角的直角三角形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.小明在解关于x的分式方程$\frac{3a-1}{x+1}$=a(a可取任意实数)时,过程如下:方程两边都乘以x+1,得3a-1=a(x+1),解得x=$\frac{2a-1}{a}$.将x的解代入原方程中,左=右,所以x=$\frac{2a-1}{a}$是原方程的解.你认为小明的解题过程正确吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△DBC内接于⊙O,DB=DC,$\widehat{AB}$=$\widehat{BC}$,DB交AC于E.
(1)求证:BC=EC;
(2)若BC=4,AC=6,求sin∠D的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知A组有三个数:1,-2,3,B组有三个数:1,-$\sqrt{2}$,$\sqrt{3}$,若从B组任选两个数分别与A组的每个数相乘,共得到6个数,再把这6个数相加得到数m,则m>0的概率为(  )
A.0B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知线段AD=10,过点D作PD⊥AD于D,点P是直线PD上一点,且PD=3,以点P为圆心,半径为5作⊙P交线段AD于点E及AD的延长线于点F,又过点A作BA⊥AD于A,BA=8,连接BE、PE.
(1)求线段EF的长;
(2)试判断直线BE与⊙P的位置关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在2015年寒假社会实践活动中,小明和小红对某偏远村庄的空巢老人进行了一次“爱心送温暖活动”.它们对该村空巢老人每周的生活费用进行了统计,并分别绘制了一幅没有完成的统计图,如图(1)和图(2)所示(图中的各部分都只含最低值不含最高值).小明说:“生活费在80元以上,少于100元(含80元,不含100元)的有17位”;小红说:“没有低于30元的”.

请根据以上信息回答下列问题:
(1)该村共有多少为空巢老人;
(2)补全两个统计图中三个空缺的部分;
(3)每周的生活费用在85~90元之间(含85元,不含90元)的空巢老人有多少位?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某人的移动电话(手机)可选择两种收费方法中的一种,甲种收费方法是先交月租费50元,每通一分钟电话再收费0.4元;乙种收费方法是不交月租费、每通一分钟电话收费0.6元.问每月通话时间在什么范围内选择甲种收费方法合适?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组:
(1)$\left\{\begin{array}{l}{x-5y-3z=-4}\\{3x+5y+z=-2}\\{x-3y-5z=-6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x}{4}=\frac{y}{5}=\frac{z}{6}}\\{2x+3y-4z+3=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,某小区为增加居民的活动面积,将一块矩形空地设计为休闲区域,其中正六边形ABCDEF的顶点均在矩形边上,正六边形内部有一正方形GHIJ.根据设计,图中阴影部分种植草坪,则草坪面积为(  )
A.a2B.($\frac{\sqrt{3}}{2}$+1)a2C.2a2D.$\frac{\sqrt{3}+1}{2}$a2

查看答案和解析>>

同步练习册答案