【题目】已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).
(1)证明:该抛物线与x轴总有交点;
(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;
(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.
【答案】(1)见解析;(2)1<a≤;(3)新图象G公共点有2个.
【解析】
(1)令抛物线的y值等于0,证所得方程的△>0即可;
(2)将点A坐标代入可求m的值,即可求a的取值范围;
(3)分k>0和k<0两种情况讨论,结合图象可求解.
解:(1)设y=0,则0=x2+(1﹣2a)x﹣2a,
∵△=(1﹣2a)2﹣4×1×(﹣2a)=(1+2a)2≥0,
∴x2+(1﹣2a)x﹣2a=0有实数根,
∴该抛物线与x轴总有交点;
(2)∵抛物线与x轴的一个交点为A(m,0),
∴0=m2+(1﹣2a)m﹣2a,
∴m=﹣1,m=2a,
∵2<m≤5,
∴2<2a≤5,
∴1<a≤;
(3)∵1<a≤,且a为整数,
∴a=2,
∴抛物线解析式为:y=x2﹣3x﹣4,
如图,当k>0时,
若y=kx+1过点(﹣1,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,
即k=1,
当0<k<1时,直线y=kx+1(k为常数)与新图象G公共点有4个,
当k>1时,直线y=kx+1(k为常数)与新图象G公共点有2个,
如图,当k<0时,
若y=kx+1过点(4,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,
即k=﹣,
当﹣<k<0时,直线y=kx+1(k为常数)与新图象G公共点有4个,
当k<﹣时,直线y=kx+1(k为常数)与新图象G公共点有2个,
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:
(1)求本次共调查了多少学生?
(2)补全条形统计图;
(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:
①∠FCG=∠CDG;
②△CEF的面积等于;
③FC平分∠BFG;
④BE2+DF2=EF2;
其中正确的结论是_____.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正三角形的一边平行于轴,一顶点在轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用表示,其中与轴、底边与与、…均相距一个单位,则顶点的坐标是__________,的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,以下四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标中,抛物线过点,点是直线上方抛物线上的一动点,轴,交直线于点,连接,交直线于点.
在如下坐标系作出该抛物线简图,并求抛物线的函数表达式;
当时,求点的坐标;
求线段的最大值:
当线段最大时,若点在直线上且,直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com