【题目】在平面直角坐标中,抛物线过点,点是直线上方抛物线上的一动点,轴,交直线于点,连接,交直线于点.
在如下坐标系作出该抛物线简图,并求抛物线的函数表达式;
当时,求点的坐标;
求线段的最大值:
当线段最大时,若点在直线上且,直接写出点的坐标.
【答案】(1),图象详见解析;(2)或;(3)当时,的值最大为;(4)的坐标为或
【解析】
(1)由于抛物线与x轴的两个交点坐标已知,可把抛物线的解析式设成交点式,再代入另一已知点坐标便可求出解析式;
(2)过A作EF⊥x轴,与BC相交于点F,用待定系数法求出BC的解析式,设P点的横坐标为t,进而求得AF与PE,由相似三角形的比例线段求得t便可;
(3)根据PE关于t的函数解析式,由函数的性质求出其最大值便可;
(4)分两种情况:①当F点在PE的左边时,过点P作PM⊥BC于点M,过E作EN⊥x轴于点N,过点F作FQ⊥x轴于点Q,过点O作OG⊥AC于点G,取AC的中点H,连接OH,通过三角形相似求出MF的值便可;②将求得的F点坐标,关于PM对称点便是另一F点.
设抛物线的解析式为:,
则
,
抛物线的解析式为:,
即
简图如下:
过作轴,与相交于点,如图1,设,
则,
设的解析式为,
则
解得
直线的解析式为:
,
,
,
,
解得,或,
或;
的解析式为:,
当时,的值最大为;
当点在的左边时,
过点作于点,过作轴于点过点作轴于点,过点作于点,取的中点,连接,
由知,当取最大值时,
,
,
,
∵是Rt△AOC斜边上的中线,,
∵×OA×OC=×AC×OG
∴
,,
,
,
即
当点在的右边时,
此时的点恰好与关于对称,
∵,直线的解析式为:
可设直线PM的解析式为:y=x+n
把代入得,解得n=
∴直线PM的解析式为:y=x+
联立,解得
设F’(p,q)
则,解得
∴
故的坐标为或.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).
(1)证明:该抛物线与x轴总有交点;
(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;
(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.五张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角、线段,现从中随机抽取一张,恰好抽到轴对称图形的概率是
B.事件“任意画一个多边形,其外角和是”是必然事件
C.一个盒子中有白球个,红球个,黑球个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么与的差是
D.事件“把个球放入三个抽屉中,其中一个抽屉中至少有个球”是随机事件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,点分别是线段上的动点(不与端点重合),且,与相交于点.给出如下几个结论:
①
②平分;
③若,则
④
其中正确的结论是_____________(填写所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】入学考试前,某语文老师为了了解所任教的甲、乙两班学生假期向的语文基础知识背诵情况,对两个班的学生进行了语文基础知识背诵检测,满分100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理,描述和分析(成绩得分用x表示,共分为五组:
A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面给出了部分信息:
甲班20名学生的成绩为:
甲组 | 82 | 85 | 96 | 73 | 91 | 99 | 87 | 91 | 86 | 91 |
87 | 94 | 89 | 96 | 96 | 91 | 100 | 93 | 94 | 99 |
乙班20名学生的成绩在D组中的数据是:93,91,92,94,92,92,92
甲、乙两班抽取的学生成绩数据统计表
班级 | 甲组 | 乙组 |
平均数 | 91 | 92 |
中位数 | 91 | b |
众数 | c | 92 |
方差 | 41.2 | 27.3 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值:a= ;b= ;c= ;
(2)根据以上数据,你认为甲、乙两个班中哪个班的学生基础知识背诵情况较好?请说明理由(一条理由即可);
(3)若甲、乙两班总人数为125,且都参加了此次基础知识检测,估计此次检测成绩优秀(x≥95)的学生人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.
(1)大巴与小车的平均速度各是多少?
(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作 d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.
(1)当⊙O的半径为2时,
①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直线与⊙O互为“可及图形”,求b的取值范围;
(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com