精英家教网 > 初中数学 > 题目详情

【题目】如图:双曲线经过点A23),射线AB经过点B02),将射线ABA按逆时针方向旋转45°,交双曲线于C,则点C的坐标的为____.

【答案】(﹣1,﹣6).

【解析】

BBFACF,过FFDy轴于D,过AAEDFE,则ABF为等腰直角三角形,易得AEF≌△FDB,设BD=a,则EF=a,进一步得到DF=2-a=AEOD=OB-BD=2-a,根据AE+OD=3,列出2-a+2-a=3,求得a的值,即可求得F的坐标,根据待定系数法求得直线AF的解析式,然后和反比例函数的解析式联立方程,解方程即可求得.

如图,过BBFACF,过FFDy轴于D,过AAEDFE,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BDa,则EFa

∵点A23)和点B02),

DF2aAEODOBBD2a

AE+OD3

2a+2a3

解得a

F),

设直线AF的解析式为ykx+b,则,解

∴直线AF的解析式为y3x3

∵双曲线经过点A23),

k2×36

∴双曲线为y

解方程组,可得

C(﹣1,﹣6),

故答案为:(﹣1,﹣6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有AB两地,甲、乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后,乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇。甲车出发的时间记为t (小时),两车之间的距离记为y(千米),yt的函数关系如图所示,则乙车第二次与甲车相遇时,甲车距离A___千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OAOC分别在x轴,y轴上,OC7,点B在第一象限,点D在边AB上,点E在边BC上,且∠BDE30°,将△BDE沿DE折叠得到△BDE.若AD1,反比例函数yk0)的图象恰好经过点B′,D,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD3

(1)设点A的坐标为(44)则点C的坐标为   

(2)若点D的坐标为(4n)

求反比例函数y的表达式;

求经过CD两点的直线所对应的函数解析式;

(3)(2)的条件下,设点E是线段CD上的动点(不与点CD重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,BAC=75°.

(1)求B、C两点的距离;

(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?

(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=x2+(2m1)x2m(<m),直线l的解析式为y=(k1)x+2mk+2.

(1)若抛物线与y轴交点的纵坐标为-3,试求抛物线的顶点坐标;

(2)试证明:抛物线与直线l必有两个交点;

(3)若抛物线经过点(x0,-4),且对于任意实数x,不等式x2+(2m1)x2m4都成立; k2≤xk时,批物线的最小值为2k+1. 求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:0a2;﹣1b0;c=﹣1;|a|=|b|时x2﹣1;以上结论中正确结论的序号为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.

(1)求A,B两种商品每件多少元?

(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?

查看答案和解析>>

同步练习册答案