【题目】如图,已知内接于⊙,直径交于点,连接,过点作,垂足为.过点作⊙的切线,交的延长线于点.
(1)若,求的度数;
(2)若,求证:;
(3)在(2)的条件下,连接,设的面积为,的面积为,若,求的值
【答案】(1)50°;(2)详见解析;(3)
【解析】
(1)连接BD,如图,利用切线性质和圆周角定理得到∠ADG=∠ABD=90°,再利用等角的余角相等得到∠ADB=∠G=50°,然后根据圆周角定理得到∠ACB的度数;
(2)连接CD,如图,利用等腰三角形的性质得到∠ABE=∠AEB,∠ODC=∠OCD,再利用圆周角定理得到∠ABC=∠ADC,然后根据三角形内角和可判断∠BAD=∠DOC;
(3)先证明△ABD∽△OFC得到,设则 则利用三角形面积公式得到则可设OF=4k,则OA=5k,利用勾股定理计算出CF,然后根据正切的定义求解.
(1)解:连接BD,如图,
∵DG为切线,
∴AD⊥DG, ∴∠ADG=90°,
∵AD为直径, ∴∠ABD=90°,
∠GDB+∠G=90°,∠ADB+∠GDB=90°,
∴∠ADB=∠G=50°,
∴∠ACB=∠ADB=50°;
(2)证明:连接CD,如图,
∵AB=AE, ∴∠ABE=∠AEB,
∵OD=OC, ∴∠ODC=∠OCD,
而∠ABC=∠ADC, ∴∠ABE=∠AEB=∠ODC=∠OCD,
∴∠BAD=∠FOC;
(3)解:∵∠BAD=∠FOC,∠ABD=∠OFC,
∴△ABD∽△OFC,
∴,
∵
设 则
∴
∴
∵
∴设OF=4k,则OA=5k,
在Rt△OCF中,OC=5k, CF=
∴tan∠CAF=
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△BED都是等腰直角三角形,∠ABC=∠DBE=90°,AD,CE相交于点G
(1)求证:△ABD≌△CBE;
(2)求证:AD⊥CE;
(3)连接AE,CD,若AE=CD=5,求△ABC和△BED的面积之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象分别与矩形的边,相交于点,,与对角线交于点,以下结论:
①若与的面积和为2,则;
②若点坐标为,,则;
③图中一定有;
④若点是的中点,且,则四边形的面积为18.
其中一定正确个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,四边形中,,,从点出发,以每秒2个单位长度的速度,按的顺序在边上匀速运动,设点的运动时间为秒,的面积为,关于的函数图像如图②所示,当运动到中点时,的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图(均不完整).
根据以上信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生;
(2)补全条形统计图;
(3)如果全校有1200名学生,学习准备的400个自行车停车位是否够用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C点在⊙O上,AD平分∠BAC交⊙O于D,过D作直线AC的垂线,交AC的延长线于E,连接BD,CD.
(1)求证:直线DE是⊙O的切线;
(2)若直径AB=6,填空:
①当AD= 时,四边形ACDO是菱形;
②过D作DH⊥AB,垂足为H,当AD= 时,四边形AHDE是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形纸片ABCD的边长为12,E是边CD的中点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com