【题目】如图,反比例函数的图象分别与矩形
的边
,
相交于点
,
,与对角线
交于点
,以下结论:
①若与
的面积和为2,则
;
②若点坐标为
,
,则
;
③图中一定有;
④若点是
的中点,且
,则四边形
的面积为18.
其中一定正确个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
①根据反比例函数比例系数的几何意义,可知
与
的面积相等,均为1,据此即可求出
的值;
②根据点坐标为
,
,求出
、
的长,计算出
的面积,据此即可求出
的值;
③根据与
的面积相等,列出等式
,然后写成比例式
,再转化为
,然后利用合比性质解答.
④根据反比例函数的几何意义,求出
,进而得出
,再求出
,从而得到四边形
的面积.
解:①、
均在反比例函数图象上,
,
又与
的面积和为2,
,
;故本选项正确;
②点坐标为
,
,
,
,
,
,
;故本选项错误;
③与
的面积相等,
,
,
,
,
,
,故本选项正确;
④过F点作交OC于G点,过F点作
交OA于H点,
,
,
又∵点是
的中点,
,
,
,故本选项正确;
总上所述,正确的有3个,
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,先将正方形纸片儿对折,折痕为MN,再把点B折叠在折痕MN上,折痕为AE,点E在CB上,点B在MN上的对应点为H,沿AH和DH剪下得到三角形ADH,则下列选项错误的是( )
A. DH=AD B. AH=DH C. NE=BE D. DM=DH
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)
(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,
OA=2,OC=1.
①点A、B、C在此斜坐标系内的坐标分别为A ,B ,C .
②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 .
③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 .
(2)若ω=120°,O为坐标原点.
①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=2,求圆M的半径及圆心M的斜坐标.
②如图4,圆M的圆心斜坐标为M(2,2
),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知抛物线与
轴最多有一个交点,现有以下三个结论:①该抛物线的对称轴在
轴右侧;②关于
的方程
无实数根;③
;其中,正确结论的个数为( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知内接于⊙
,直径
交
于点
,连接
,过点
作
,垂足为
.过点
作⊙
的切线,交
的延长线于点
.
(1)若,求
的度数;
(2)若,求证:
;
(3)在(2)的条件下,连接,设
的面积为
,
的面积为
,若
,求
的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;
(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程
(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于
的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com