【题目】如图①,四边形中,,,从点出发,以每秒2个单位长度的速度,按的顺序在边上匀速运动,设点的运动时间为秒,的面积为,关于的函数图像如图②所示,当运动到中点时,的面积为__________.
【答案】20
【解析】
由函数图象上的点(6,32)、(10,0)的实际意义可知AB+BC、AB+BC+CD的长及△PAD的最大面积,从而求得AD、CD的长,再根据点P运动到点B时得,从而求得AB的长,最后根据梯形的中位线定理可求得当P运动到BC中点时,△PAD的面积.
解:由图象可知,AB+BC=12,AB+BC+CD=20,
∴CD=8,
根据题意可知,当P点运动到C点时,△PAD的面积最大,
, ∴AD=8,
又∵,
∴AB=2,
当P点运动到BC中点时,BP=PC,
如图,作PQ⊥AD于点Q,
∴AB∥PQ∥CD,
∴PQ为梯形ABCD的中位线,
则PQ= ,
∴△PAD的面积=
故答案为:20.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,在轴上任取一点,连接,作的垂直平分线,过点作轴的垂线,与交于点.设点的坐标为.
(Ⅰ)当的坐标取时,点的坐标为________;
(Ⅱ)求,满足的关系式;
(Ⅲ)是否存在点,使得恰为等边三角形?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,分别以顶点A、B为圆心,大于AB为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好经过点C.下列结论中,错误的是( )
A.AB是⊙O的直径B.∠ACB=90°
C.△ABC是⊙O内接三角形D.O是△ABC的内心
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如下表:
售价(元/件) | 200 | 210 | 220 | 230 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件150元.
(1)售价为元,月销量为件;
①求关于的函数关系式;
②若销售该运动服的月利润为元,求关于的函数关系式,并求月利润最大时的售价;
(2)由于运动服进价降低了元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知内接于⊙,直径交于点,连接,过点作,垂足为.过点作⊙的切线,交的延长线于点.
(1)若,求的度数;
(2)若,求证:;
(3)在(2)的条件下,连接,设的面积为,的面积为,若,求的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.
(1)如图1,若∠PCB=∠A.
①求证:直线PC是⊙O的切线;
②若CP=CA,OA=2,求CP的长;
(2)如图2,若点M是弧AB的中点,CM交AB于点N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连结EF,DE,DF,M是FE中点,连结MC,设FE与DC相交于点N.则4个结论:①DE=DF;②∠CME=∠CDE;③DG2=GN GE;④若BF=2,则正确的结论有( )个.
A.4B.3C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com