分析 由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AD>AE,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.
解答 解:∵DE⊥AB于E,DF⊥AC于F,
∴∠E=∠DFC=90°,
在Rt△BDE和Rt△CDF中,
$\left\{\begin{array}{l}{BD=CD}\\{BE=CF}\end{array}\right.$,
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,①正确,
∴AD平分∠BAC,②正确,
∵在Rt△ADE中,AD是斜边,
∴AD>AE,③不正确,
∵Rt△BDE≌Rt△CDF,
∴BE=CF,AE=AF,
∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;
正确的是①②④.
故答案为:①②④.
点评 本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com