【题目】如图,在△ABC中,AD是BC边上的中线,点E、F在AB边上,连接DE,CF交AD于G,点E是BF中点.
(1)求证:△AFG∽△AED
(2)若FG=2,G为AD中点,求CG的长.
【答案】(1)见解析;(2)6
【解析】
试题分析:(1)根据AD是BC边上的中线,点E是BF中点,得到BD=CD,BE=EF,根据三角形的中位线的性质得到DE∥CF,即可得到结论;
(2)由G为AD中点,FG∥DE,得到AF=EF,求得DE=2FG=4,根据三角形的中位线的性质得到CF=2DE=8,即可得到结论.
(1)证明:∵AD是BC边上的中线,点E是BF中点,
∴BD=CD,BE=EF,
∴DE是△BCF的中位线,
∴DE∥CF,
∴DE∥FG,
∴△AFG∽△AED;
(2)解:∵G为AD中点,FG∥DE,
∴AF=EF,
∴FG是△ADE的中位线,
∴DE=2FG=4,
∴CF=2DE=8,
∴CG=FC﹣FG=8﹣2=6.
科目:初中数学 来源: 题型:
【题目】如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:(1)∠1=∠2;
(2)DG=B′G.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE,得到四边形EFGH,若AB=a,∠A=60°,当四边形
EFGH的面积取得最大时,BE的长度为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形DEFG是△ABC的内接矩形,如果△ABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,
(1)求y关于x的函数关系式;
(2)当x为何值时,四边形DEFG的面积最大?最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com