【题目】如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE⊥DF,交AB于点E,交BC于点F,若AE=8,FC=6.
(1)求EF的长.
(2)求四边形BEDF的面积.
【答案】(1)EF的长为10;(2)S四边形BEDF=49.
【解析】
(1)首先连接BD,由已知等腰直角三角形ABC,可推出BD⊥AC且BD=CD=AD,∠ABD=45°再由DE丄DF,可推出∠FDC=∠EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,从而得出BE=FC=6,那么AB=14,则BC=14,BF=8,再根据勾股定理求出EF的长;
(2)由△EDB≌△FDC,可得S四边形BEDF= S△CDF+ S△BDF=S△BDC,再由D为AC中点,可得S△BDC=S△ABC,由此即可求得答案.
(1)连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
,
∴△EDB≌△FDC(ASA),
∴BE=FC=6,
∴AB=AE+BE=8+6=14,则BC=14,
∴BF=BC-CF=14-6=8,
在Rt△EBF中, EF2=BE2+BF2=62+82,
∴EF=10,
答:EF的长为10;
(2)∵△EDB≌△FDC,
∴S四边形BEDF=S△BDE+S△BDF=S△CDF+ S△BDF=S△BDC,
∵D为AC中点,
∴S△BDC=S△ABC,
∵S△ABC=ABBC,AB=BC=14,
∴S△ABC==98,
∴S四边形BEDF=49.
科目:初中数学 来源: 题型:
【题目】一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……
(1)写出第一次移动后这个点在数轴上表示的数为 ;
(2)写出第二次移动后这个点在数轴上表示的数为 ;
(3)写出第五次移动后这个点在数轴上表示的数为 ;
(4)写出第次移动结果这个点在数轴上表示的数为 ;
(5)如果第次移动后这个点在数轴上表示的数为56,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数的图象经过点A,则k的值是( )
A. ﹣2 B. ﹣4 C. ﹣ D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l分别与x轴,y轴交于A,B两点,与双曲线(k≠0,x>0)分别交于D,E两点.若点D的坐标为((3.1),点E的坐标为(1,n).
(1)分别求出直线l与双曲线的解析式;
(2)求△EOD的面积;
(3)若将直线l向下平移m(m>O)个单位,当m为何位时,直线l与双曲线有且只有一个交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称:DF⊥DE于点D,并交EC的延长线于点F,下列结论:
①CE=CF;
②线段EF的最小值为;
③当AD=1时,EF与半圆相切;
④当点D从点A运动到点O时,线段EF扫过的面积是4.
其中正确的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为__cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于F。
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B顺时针旋转角α,且60°<α<180°,其他条件不变,如图2,请直接写出此时线段AF,EF与DE之间的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-2bx+c.
(1)若抛物线的顶点坐标为(2,-3),求b,c的值;
(2)若b+c=0,是否存在实数x,使得相应的y的值为1?请说明理由;
(3)若c=b+2且抛物线在-2≤x≤2上的最小值是-3,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com