精英家教网 > 初中数学 > 题目详情
3.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a-b)7的第5项的系数是35.

分析 根据“杨辉三角”,寻找解题的规律.

解答 解:根据规律,(a+b)7的展开式共有8项,
各项系数依次为1,-7,21,-35,35,-21,7,-1,
故第5项的系数是35,
故答案为35.

点评 本题考查了完全平方公式.关键是由“杨辉三角”图,由易到难,发现一般规律.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.定义:a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如2的差倒数是$\frac{1}{1-2}$=-1,-1的差倒数是$\frac{1}{1-(-1)}$=$\frac{1}{2}$.已知a1=-$\frac{1}{2}$,a2是a1的差倒数,a3是a2的差倒数,a4是 a3的差倒数,…,以此类推,则a2016为(  )
A.$-\frac{1}{2}$B.$\frac{2}{3}$C.3D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某工厂生产一种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产1件茶农有0.5m2污水排出,为了净化环境,工厂设计出了两种处理污水的方案.
方案一:工厂污水净化处理后再排出,每处理1m2污水所用的原料费为2元,并且每月排污设备损耗为30000元;
方案二:工厂将污水排到污水处理厂进行统一处理,每处理1m2污水需付14元排污费.
问:如果该厂每月生产6000件产品,那么在不污染环境又节约资金的前提下,应选用哪种处理污水的方案?请通过计算加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,点A的坐标为(0,2),点p的坐标为(m,0)且m>0,一开口向上的抛物线以P为顶点,且经过点A.
(1)求该抛物线的解析式;(m作为常数)
(2)在第一象限内,过点A作AB⊥AP,且∠APB=∠APO,过点B作BC⊥x轴于点C,交抛物线于点D,问BC的长是否随m的变化而变化?若变化,请用含m的代数式表示线段BC的长度;若不变,请求出线段BC的长度;
(3)在(2)的条件下,当m为何值时,抛物线正好经过线段BC的中点D?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在密码学中,把直接可以看到的内容称为明码,对明码进行某种处理后得到的内容称为密码.有一种密码,将英文26个字母a,b,c,…z依次对应1、2、3,…,26这26个自然数,如下表,当明码对应的序号x为奇数时,密码对应的序号y=$\frac{x+1}{2}$;当明码对应的序号x为偶数时,密码对应的序号y=$\frac{x}{2}+13$.
字母abcdefghijklm
序号12345678910111213
字母nopqrstuvwxyz
序号14151617181920212223242526
按上述规定,将明码“love”译成密码(密码是字母)是s、h、x、c.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在等腰Rt△ABC中,∠A=90°,AC=AB=2,D是BC边上的点且BD=$\frac{1}{3}$CD,连接AD,把AD绕着点A顺时针旋转90°得到线段AE,连接BE,则点B到AD的距离为$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平行四边形ABCD中,AE⊥BC,AF⊥CD,若平行四边形ABCD的周长为48,AE=5,AF=10,则平行四边形ABCD的面积是80.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列关于平角和周角的说法正确的是(  )
A.平角是一条线段B.周角是一条射线
C.两个锐角的和不一定小于平角D.反向延长射线OA,就形成一个平角

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.墨墨用黑色的棋子摆各种正多边形,如图所示,他摆正三角形的时候用了6个棋子,摆正方形的时候用了8个棋子,摆正五边形的时候用了10个棋子,以此类推,当墨墨摆完正十二边形时,共用了150个棋子.

查看答案和解析>>

同步练习册答案