精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,过点BBEAC,在BG上取点E,连接DEAC的延长线于点F

1)求证:DF=EF

2)如果AD=2,∠ADC=60°ACDC于点CAC=2CF,求BE的长.

【答案】1)证明见解析;(22.

【解析】

1)连接BDAC于点O.由平行四边形的性质可知OBD中点,又因为BGAF,进而证明DF=EF

2)利用直角三角形的性质和三角形中位线性质定理以及平行四边形的性质即可求出BE的长.

1)证明:连接BDAC于点O

∵四边形ABCD是平行四边形,

OB=OD

BGAF

DF=EF

2)∵ACDC,∠ADC=60°AD=2

AC=

OFDBE的中位线,

BE=2OF

OF=OC+CF

BE=2OC+2CF

∵四边形ABCD是平行四边形,

AC=2OC

AC=2CF

BE=2AC=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在 Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,点E是线段BD的中点,则CE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BCAD于点EFEFAC于点O

1)求证:四边形AECF是菱形;(2)若AB=6AD=8,求四边形AECF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC1cm/s的速度移动,设运动的时间为ts.

(1)求BC边的长;

(2)当△ABP为直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);
(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE,EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2l1交于点C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展朗读比赛活动,九年级班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100如图所示.

平均数

中位数

众数

85

85

80

根据图示填写表格;

结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.

根据上述信息,解答下列问题:
(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).

阶梯

一户居民每月用电量x(单位:度)

电费价格(单位:元/度)

一档

0<x≤180

a

二档

180<x≤280

b

三档

x>280

0.82


(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;
(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?

查看答案和解析>>

同步练习册答案