精英家教网 > 初中数学 > 题目详情

【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);
(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE,EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.

【答案】
(1)证明:∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∵E是线段AC的中点,

∴∠CBE= ∠ABC=30°,AE=CE,

∵AE=CF,

∴CE=CF,

∴∠F=∠CEF,

∵∠F+∠CEF=∠ACB=60°,

∴∠F=30°,

∴∠CBE=∠F,

∴BE=EF


(2)证明:图2:BE=EF.

图2证明如下:过点E作EG∥BC,交AB于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=120°,

∴△BGE≌△ECF(SAS),

∴BE=EF;

图3:BE=EF.

图3证明如下:过点E作EG∥BC交AB延长线于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=60°,

∴△BGE≌△ECF(SAS),

∴BE=EF


【解析】(1)根据菱形的性质结合∠ABC=60°可得△ABC是等边三角形,再求得CE=CF,然后等边对等角的性质可得∠F=∠CEF,根据三角形的一个外角的性质求出∠F=30°,从而得到∠CBE=∠F,根据等角对等边的性质即可证得BE=EF;
(2)图2,通过作辅助线,根据菱形的性质可得△ABC是等边三角形,根据等边三角形的性质得到AG=AE,从而可以求出BG=CE,再根据等角的补角相等求出∠BGE=∠ECF=120°,然后利用“边角边”证明△BGE和△ECF 全等,根据全等三角形对应边相等即可得证BE=EF;
图3,证明思路与方法与图2完全相同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】教科书中这样写道:“我们把多项式叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项使式子中出现完全平方式,再减去这个项,使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求化数式最大值.最小值等.

例如:分解因式

;例如求代数式的最小值..可知当时,有最小值,最小值是,根据阅读材料用配方法解决下列问题:

1)分解因式: _____

2)当为何值时,多项式有最小值,并求出这个最小值.

3)当为何值时.多项式有最小值并求出这个最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.

(1)请你用直尺和圆规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(﹣2,﹣1),则点C的坐标为
(3)线段AB在旋转到线段AC的过程中,线段AB扫过区域的面积为
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个圆锥的侧面,则该圆锥底面圆的半径长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 , 求△A1B1C1旋转过程中扫过的面积(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△ADE中,边AD与边BC交于点P(不与点BC重合),点BEAD异侧,OAOC分别是∠PAC∠PCA的角平分线.

    

1)当∠APC =60°时,求∠AOC的度数;

2)当AB⊥ACAB=AD=4AC=3BC=5时,设AP=x,用含x的式子表示PD,并求PD的最大值;

3)当AB⊥AC∠B=20°时,∠AOC的取值范围为α°<∠AOC <β°,直接写出αβ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点BBEAC,在BG上取点E,连接DEAC的延长线于点F

1)求证:DF=EF

2)如果AD=2,∠ADC=60°ACDC于点CAC=2CF,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是平面直角坐标系中的一点且不在坐标轴上,过点Px轴、y轴作垂线段,若垂线段的长度的和为4,则点P叫做垂距点,例如:如图中的点P13)是垂距点

1)在点A(﹣22),C(﹣15)是垂距点   

2)若垂距点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,下列结论:
①4ac<b2;②a+c>b;③2a+b>0.
其中正确的有( )

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境

在综合与实践课上,老师让同学们以两条平行线ABCD和一块含60°角的直角三角尺EFG(EFG90°,∠EGF60°)”为主题开展数学活动.

操作发现

(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠221,求∠1的度数;

(2)如图(2),小颖把三角尺的两个锐角的顶点EG分别放在ABCD上,请你探索并说明∠AEF与∠FGC之间的数量关系;

结论应用

(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEGα,则∠CFG等于______(用含α的式子表示)

查看答案和解析>>

同步练习册答案