【题目】解决问题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家.
(2)小明家距小彬家多远?
(3)货车一共行驶的多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
【答案】(1)数轴见解析;(2)小明家距小彬家7.5千米;(3)货车一共行驶了20千米;(4)这次共耗油4升.
【解析】
(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据两点之间的距离公式求出小明家与小彬家的距离即可;(3)分别计算每次行驶的距离的绝对值,求和即可得答案;(4)用总行程×0.2即可得答案.
(1)∵以超市为原点,以向东的方向为正方向,
∴货车依次行驶的距离为:+3、+2.5、-10,+4.5
∴数轴表示如下:
(2)由数轴可得:小明家表示的数为-4.5千米,小彬家表示的数为3千米,
∴3-(-4.5)=7.5(千米),
答:小明家距小彬家7.5千米.
(3)+++=20(千米),
答:货车一共行驶了20千米.
(4)20×0.2=4(升),
答:这次共耗油4升.
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,直线y=12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.
(1)求线段AB的长度
(2)求直线BC的解析式;
(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O,限用无刻度直尺完成以下作图:
(1)在图1中作线段BC的中点P;
(2)在图2中,在OB、OC上分别取点E、F,使EF∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(﹣x,0),C(0,y),且x、y满足.
(1)矩形的顶点B的坐标是 .
(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.
①求证:四边形DBOQ是平行四边形.
②求△OEQ面积.
(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,有点、点.
(1)当A、B两点关于x轴对称时,求的面积;
(2)若点A向上平移2个单位,再向右平移3个单位,得到点与点B重合,求A的坐标;
(3)当线段轴,且时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是( )
(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠BAO=∠DAO.
(1)求证:平行四边形ABCD是菱形;
(2)请添加一个条件使菱形ABCD为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有公共端点的两条线段,组成一条折线,若该折线上一点把这条折线分成相等的两部分,我们把这个点叫做这条折线的“折中点”.已知点是折线的“折中点”,点为线段的中点,,,则线段的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
(1)求△ABC的面积是____;
(2)求直线AB的表达式;
(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com