【题目】正方形ABCD的边长为4,点E在BC上,点F在CD上,且CF=BE,AE与BF交于G点.
(1)如图1,求证:①AE=BF,②AE⊥BF.
(2)连接CG并延长交AB于点H,
①若点E为BC的中点(如图2),求BH的长;
②若点E在BC的边上滑动(不与B、C重合),当CG取得最小值时,求BE的长.
【答案】(1)①见解析;②见解析;(2)①BH=;②2﹣2.
【解析】
(1)①由正方形的性质得出AB=BC=4,∠ABC=∠BCD=90°,由SAS证明△ABE≌△BCF,即可得出结论;
②由①得:△ABE≌△BCF,得出∠BAE=∠CBF,证出∠AGB=90°,即可得出结论;
(2)①由直角三角形的性质得出CF=BE=BC=2,由勾股定理得出BF=2,由(1)得:AE⊥BF,则∠BGE=∠ABE=90°,证明△BEG∽△AEB,得出 =,设GE=x,则BG=2x,在Rt△BEG中,由勾股定理得出方程,解方程得出BG=2× ,由平行线得出 ,即可得出BH的长;
②由(1)得:∠AGB=90°,得出点G在以AB为直径的圆上,设AB的中点为M,当C、G、M在同一直线上时,CG为最小值,求出GM=AB=BM=2,由平行线得出 =1,证出CF=CG=BE,设CF=CG=BE=a,则CM=a+2,在Rt△BCM中,由勾股定理得出方程,解方程即可.
(1)证明:①∵四边形ABCD是正方形,
∴AB=BC=4,∠ABC=∠BCD=90°,
在△ABE和△BCF中, ,
∴△ABE≌△BCF(SAS),
∴AE=BF;
②由①得:△ABE≌△BCF,
∴∠BAE=∠CBF,
∵∠CBF+∠ABF=90°,
∴∠BAE+∠ABF=90°,
∴∠AGB=90°,
∴AE⊥BF;
(2)解:①如图2所示:
∵E为BC的中点,
∴CF=BE=BC=2,
∴BF ,
由(1)得:AE⊥BF,
∴∠BGE=∠ABE=90°,
∵∠BEG=∠AEB,
∴△BEG∽△AEB,
∴ ,
设GE=x,则BG=2x,
在Rt△BEG中,由勾股定理得:x2+(2x)2=22,
解得:x= ,
∴BG=2× ,
∵AB∥CD,
∴ ,即 ,
解得:BH=;
②由(1)得:∠AGB=90°,
∴点G在以AB为直径的圆上,
设AB的中点为M,
由图形可知:当C、G、M在同一直线上时,CG为最小值,如图3所示:
∵AE⊥BF,
∴∠AGB=90°,
∴GM=AB=BM=2,
∵AB∥CD,
∴ =1,
∴CF=CG,
∵CF=BE,
∴CF=CG=BE,
设CF=CG=BE=a,则CM=a+2,
在Rt△BCM中,由勾股定理得:22+42=(a+2)2,
解得:a=2﹣2,即
当CG取得最小值时,BE的长为2﹣2.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=5,AC=4,若进行一下操作,在边BC上从左到右一次取点D1、D2、D3、D4…;过点D1作AB、AC的平行线分别交于AC、AB与点E1、F1;过点D2作AB、AC的平行线分别交于AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交于AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一张矩形纸片ABCD上制作一幅扇形艺术画.扇形的圆弧和边AD相切,切点为P,BC边中点E为扇形的圆心,半径端点M,N分别在边AB,CD上,已知AB=10cm,BC=10cm,则扇形艺术画的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向1的概率为 ;
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:
(1)该调查小组抽取的样本容量是多少?
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
(3)请估计该市中小学生一天中阳光体育运动的平均时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生课外阅读,开阔视野,某校开展了“书香校园,诵读经典”活动,学习随机抽查了部分学生,对他们每天的课外阅读时间进行调查,并将调查统计的结果分为四类:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类,收集的数据绘制如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)这次共抽取了 名学生进行调查统计,扇形统计图中D类所对应的扇形圆心角大小为 ;
(2)将条形统计图补充完整;
(3)如果该校共有2000名学生,请你估计该校C类学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系XOY中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0).
(1)求抛物线的解析式;
(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.
①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;
②当△PDC与△COA相似时,直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com