【题目】如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
【答案】A
【解析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠2=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠2,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
作AD⊥y轴于D,作CE⊥y轴于E,如图所示:
则∠ADO=∠OEC=90°,∴∠1+∠2=90°.
∵AO=2,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2.
在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
故选A.
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,.点为边上一点(不与点重合),点为边上一点,线段、相交于点,其中.
求证:;
若,求的长及四边形的面积;
连接,若是以为腰的等腰三角形,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(,0),B(0,1),O(0,0).
(1)点P为边OA上一点(点P不与A,O重合),沿BP将纸片折叠得A的对应点A′.边BA′与x轴交于点Q.
①如图1,当点A′刚好落在y轴上时,求点A′的坐标.
②如图2,当A′P⊥OA,若线段OQ在x轴上移动得到线段O′Q′(线段OQ平移时A′不动),当△A′O′Q′周长最小时,求OO′的长度.
(2)如图3,若点P为边AB上一点(点P不与A,B重合),沿OP将纸片折叠得A的对应点A″,当∠BPA″=30°时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把满足下面条件的△ABC称为“黄金三角形”:
①△ABC是等腰三角形;②在三角形的某条边上存在不与顶点重合的点P,使得P与P所在边的对角顶点连线把△ABC分成两个不全等的等腰三角形.
(1)△ABC中,AB=AC,∠A:∠C=1:2,可证△ABC是“黄金三角形”,此时∠A的度数为_________.
(2)△ABC中,AB=AC, ∠A为钝角.若△ABC为“黄金三角形”,则∠A的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A. 1+ B. 1+ C. 2sin20°+ D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的代数式x2+bx+c,设代数式的值为y.下表中列出了当x分别取﹣1,0,1,2,3,4,5,…m,m+1…时对应的y值.
x | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | m | m+1 | |||
y | 10 | 5 | 2 | 1 | 2 | 5 | n | p | q |
(1)表中n的值为 ;
(2)当x= 时,y有最小值,最小值是 ;
(3)比较p与q的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com