【题目】在中,,,平分交于,,在,上,且.
(1)求的度数;
(2)求证:.
【答案】(1)108°;(2)见解析
【解析】
(1)由等腰三角形的性质和三角形内角和定理得出∠B=∠ACB=72°,由角平分线定义得出∠ACD=∠BCD=36°,由三角形的外角性质即可得出答案;
(2)由(1)得∠ACD=36°=∠A,∠ADC=108°,得出AD=CD,证出∠ADC=∠EDF,得出∠ADE=∠CDF,证明△ADE≌△CDF(ASA),得出AE=CF,即可得出结论.
(1)解:∵AB=AC,∠A=36°,
∴∠B=∠ACB=(180°-36°)=72°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=36°,
∴∠ADC=∠B+∠BCD=72°+36°=108°;
(2)证明:由(1)得:∠ACD=36°=∠A,∠ADC=108°,
∴AD=CD,
∵∠EDF=108°,
∴∠ADC=∠EDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF,
∵CF+BF=BC,
∴AE+BF=BC.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,为了满足颍上县百姓的消费需要,某大型商场计划用170000元购进一批家电,这批家里的进价和售价如表:
类别 | 彩电 | 冰箱 | 洗衣机 |
进价(元/台) | 2000 | 1600 | 1000 |
售价(元/台) | 2300 | 1800 | 1100 |
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.
(1)用含x的代数式表示洗衣机的台数.
(2)商场至多可以购买冰箱多少台?
(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:甲、乙两车分别从相距300km的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.
(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量的取值范围;
(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;
(3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为CD上一点,连接BE, ∠EBC=15°,将ΔEBC绕点C按顺时针方向旋转90°得到ΔFDC,连接EF,则∠EFD的度数为( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:
①年用水量不超过180m3的该市居民家庭按第一档水价交费;
②年用水量不超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150~180m3之间;
④该市居民家庭年用水量的众数约为110m3.
其中合理的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com