精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正比例函数y=kx(k0)的图象与x轴相交所成的锐角为70°,定点A的坐标为(0,8),P为y轴上的一个动点,M、N为函数y=kx(k0)的图象上的两个动点,则AM+MP+PN的最小值为(  )

A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)

【答案】B

【解析】

y轴关于直线y=kx对称的对称直线OC,作直线y=kx关于y轴对称的对称直线OD,点A是点A关于直线y=kx的对称点.作AEOD垂足为E,交y轴于点P,交直线y=kxM,作PN⊥直线y=kx垂足为N,如图,

PN=PEAM=AM

AM+PM+PN=AM+PM+PE=AE

∴此时AM+MP+PN值最小,

RtAEO中,∵∠AEO=90°,OA′=OA=8,AOE=3AOM=60°,

OE=OA′=4,

AE=OE=4

AM+MP+PN的最小值为4

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCADE中,∠BAC=∠DAE90°ABACADAE,点CDE三点在同一直线上.

1)求证:BAD≌△CAE

2)猜想BDCE有何特殊位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40kmB处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距kmC处.

(1)求该轮船航行的速度(保留精确结果);

(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以的边为边,向外作等边和等边三角形,连接相交于点.

(1)求证:;

(2)的度数;

(3)请直接写出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,∠C90°AC20BC10PQABPQ两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点AC重合,那么当点P运动到什么位置时,才能使ABCAPQ全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,∠BAC90°,∠B45°OBC中点,如果点MN分别在线段ABAC上移动,设AM长为xCN的长为y,且xy满足等式0a0).

1)求证:BMAN

2)请你证明OMN为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为______

查看答案和解析>>

同步练习册答案