【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
【答案】(1)12(千米/小时).(2)故轮船能够正好行至码头MN靠岸.
【解析】试题分析:(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.
(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.
试题解析:(1)∵∠1=30°,∠2=60°,
∴△ABC为直角三角形.
∵AB=40km,AC=km,
∴BC=(km).
∵1小时20分钟=80分钟,1小时=60分钟,
∴×60=12(千米/小时).
(2)能.
理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.
∵∠2=60°,
∴∠4=90°﹣60°=30°.
∵AC=8(km),
∴CS=8sin30°=4(km).
∴AS=8cos30°=8×=12(km).
又∵∠1=30°,
∴∠3=90°﹣30°=60°.
∵AB=40km,
∴BR=40sin60°=20(km).
∴AR=40×cos60°=40×=20(km).
易得,△STC∽△RTB,
所以,
.
解得:ST=8(km).
所以AT=12+8=20(km).
又因为AM=19.5km,MN长为1km,∴AN=20.5km,
∵19.5<AT<20.5
故轮船能够正好行至码头MN靠岸.
科目:初中数学 来源: 题型:
【题目】甲和乙一起做游戏,下列游戏规则对双方公平的是( )
A. 在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一球,摸到红球甲获胜,摸到白球乙获胜;
B. 从标有号数1到100的100张卡片中,随意抽取一张,抽到号数为奇数甲获胜,否则乙获胜;
C. 任意掷一枚质地均匀的骰子,掷出的点数小于4则甲获胜,掷出的点数大于4则乙获胜;
D. 让小球在如图所示的地板上自由地滚动,并随机地停在某块方块上,若小球停在黑色区域则甲获胜,若停在白色区域则乙获胜
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=2x﹣2与x轴交于点A,与y轴交于点B.
(1)求点A,B的坐标;
(2)画出直线AB,并求△OAB的面积;
(3)点C在x轴上,且AC=AB,直接写出点C坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的粒数m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
发芽的频率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三个推断:
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
②根据上表,估计绿豆发芽的概率是0.95;
③若n为4000,估计绿豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A. ① B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
(1)实践操作:中,,为直线上一点,过点作,与直线相交于点,如图①,图②,图③所示,则的形状为______.
(2)问题解决:等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起解决问题.如图④,中,,为上一点,为延长线上一点,且,交于,求证:.
(3)拓展与应用,在(2)的条件下,如图⑤,过点作的垂线,垂足为,若,则的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C.
(1)求证:直线AE是⊙O的切线;
(2)若∠BAE=30°,⊙O的半径为2,求阴影部分的面积;
(3)若EB=AB,cos∠E=,AE=24,求EB的长及⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=kx(k>0)的图象与x轴相交所成的锐角为70°,定点A的坐标为(0,8),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图象上的两个动点,则AM+MP+PN的最小值为( )
A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为,则下面列出的方程中正确的是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com