精英家教网 > 初中数学 > 题目详情

【题目】直线y2x2x轴交于点A,与y轴交于点B

1)求点AB的坐标;

2)画出直线AB,并求OAB的面积;

3)点Cx轴上,且ACAB,直接写出点C坐标.

【答案】(1)A10),B0,﹣2);(21;(3C1+0),C10).

【解析】

1)根据坐标轴上点的特征和所在的函数解析式,即可求出AB两点坐标;

2)画出直线AB,然后根据三角形的面积公式求面积即可;

3)先根据勾股定理求出AB的长,根据题意AC=AB,从而求出点C的坐标.

解:(1)令x0,得到y=﹣2

B0,﹣2),

y0,得到x1

A10);

2)直线AB如图所示:

OA1OB2

∴△OAB的面积为:

2)如上图,∵AB

ACAB

C1+0),C10).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知抛物线y=﹣x2+2x+3与x轴交于AB两点,点M在这条抛物线上,点Py轴上,如果四边形ABMP是平行四边形,则点M的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中   事件,小悦被抽中   事件(填不可能必然随机);第一次抽取卡片小悦被抽中的概率为   

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCADE中,∠BAC=∠DAE90°ABACADAE,点CDE三点在同一直线上.

1)求证:BAD≌△CAE

2)猜想BDCE有何特殊位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使ADC与BDA相似,可以添加一个条件.下列添加的条件中错误的是( )

A. ACD=DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点AO的切线交DC的延长线于点E,且DCBDAC.

(1)求证:CDO的切线;

(2)AD6tanDCB,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12)如图,在RtABC中,ACB90°AC8BC6CDAB于点D.P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线CD的长;

(2)CPQ的面积为S,求St之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,说明理由;

(3)t为何值时,CPQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40kmB处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距kmC处.

(1)求该轮船航行的速度(保留精确结果);

(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

同步练习册答案