精英家教网 > 初中数学 > 题目详情

【题目】(12)如图,在RtABC中,ACB90°AC8BC6CDAB于点D.P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线CD的长;

(2)CPQ的面积为S,求St之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,说明理由;

(3)t为何值时,CPQ为等腰三角形?

【答案】(148;(2t=t=3;(3t=24秒或秒或秒.

【解析】试题分析:(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.

2)过点PPHAC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出St之间的函数关系式;利用=9100建立t的方程,解方程即可解决问题.

3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PCQC=QP不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t

试题解析:(1)如图1∵∠ACB=90°AC=8BC=6

∴AB=10

∵CD⊥AB

SABC=BC·AC=AB·CD

CD===4.8

线段CD的长为4.8

2过点PPH⊥AC,垂足为H,如图2所示.

由题可知DP=tCQ=t

CP=4.8﹣t

∵∠ACB=∠CDB=90°

∴∠HCP=90°﹣∠DCB=∠B

∵PH⊥AC

∴∠CHP=90°

∴∠CHP=∠ACB

∴△CHP∽△BCA

PH=

=CQ·PH==

存在某一时刻t,使得=9100

=×6×8=24,且=9100

):24=9100

整理得:5t2﹣24t+27=0

即(5t﹣9)(t﹣3=0

解得:t=t=3

∵0≤t≤4.8

t=秒或t=3秒时, =9100

3)存在

CQ=CP,如图1

t=4.8﹣t

解得:t=2.4

PQ=PC,如图2所示.

∵PQ=PCPH⊥QC

QH=CH=QC=

∵△CHP∽△BCA

解得;t=

QC=QP

过点QQE⊥CP,垂足为E,如图3所示.

同理可得:t=

综上所述:当t2.4秒或秒或秒时,CPQ为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(

A.在∠A、∠B两内角平分线的交点处

B.ACBC两边垂直平分线的交点处

C.ACBC两边高线的交点处

D.ACBC两边中线的交点处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACAD⊥BCD点,EF分别为DBDC的中点,则图中共有全等三角形 对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y2x2x轴交于点A,与y轴交于点B

1)求点AB的坐标;

2)画出直线AB,并求OAB的面积;

3)点Cx轴上,且ACAB,直接写出点C坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016·赤峰)为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A岛测得B岛在北偏西30°方向,C岛在北偏东15°方向,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求BC两岛及AC两岛的距离.(结果保留到整数, ≈1.41 ≈2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿豆在相同条件下的发芽试验,结果如下表所示:

每批粒数n

100

300

400

600

1000

2000

3000

发芽的粒数m

96

282

382

570

948

1904

2850

发芽的频率

0.960

0.940

0.955

0.950

0.948

0.952

0.950

下面有三个推断:

①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;

②根据上表,估计绿豆发芽的概率是0.95;

③若n4000,估计绿豆发芽的粒数大约为3800粒.

其中推断合理的是(  )

A. B. ①② C. ①③ D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

1)实践操作:中,为直线上一点,过点作,与直线相交于点,如图①,图②,图③所示,则的形状为______.

2)问题解决:等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起解决问题.如图④,中,上一点,延长线上一点,且,求证:.

3)拓展与应用,在(2)的条件下,如图⑤,过点的垂线,垂足为,若,则的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙OAD是⊙O直径,ECB延长线上一点,且∠BAE=C

(1)求证:直线AE是⊙O的切线;

(2)若∠BAE=30°,O的半径为2,求阴影部分的面积;

(3)若EB=AB,cosE=AE=24,求EB的长及⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c过点A(0,2).

(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;

(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.

求抛物线的解析式;

若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.

查看答案和解析>>

同步练习册答案