精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于⊙OAD是⊙O直径,ECB延长线上一点,且∠BAE=C

(1)求证:直线AE是⊙O的切线;

(2)若∠BAE=30°,O的半径为2,求阴影部分的面积;

(3)若EB=AB,cosE=AE=24,求EB的长及⊙O的半径.

【答案】(1)见解析;(2) π﹣(3)BE=20,半径:.

【解析】

1)连接BD,利用圆周角定理得到∠ABD=90°,则∠D+∠DAB=90°,再利用等量代换证明∠DAE=90°,然后根据切线的判定定理即可得到结论;

2)连接OB,先计算出∠OAB=60°,得到△AOB为等边三角形,所以∠AOB=60°,然后利用阴影部份的面积=S扇形AOBSAOB进行计算;

3)作BHAEH,利用等腰三角形的性质得AH=EH=AE=12,∠E=∠BAE.在RtBEH中利用余弦的定义可计算出BE=20,则AB=20,由于∠D=∠C=∠BAE=∠E,则cos∠D=.在RtABD中,cos∠D==,设BD=3xAD=5x,易得4x=20,解出x得到AD的长,从而得到⊙O的半径.

1)连接BD,如图,∵AD为直径,∴∠ABD=90°,∴∠D+∠DAB=90°.

∵∠C=∠D,∠BAE=∠C,∴∠BAE+∠DAB=90°,即∠DAE=90°,∴ADAE,∴直线AE是⊙O的切线;

2)连接OB,如图,∵∠BAE=30°,∴∠OAB=60°,而OA=OB,∴△AOB为等边三角形,∴∠AOB=60°,∴阴影部份的面积=S扇形AOBSAOB=×22=π﹣

3)作BHAEH,如图,∵EB=AB,∴AH=EH=AE=12,∠E=∠BAE.在RtBEH中,∵cos∠E==,∴BE=12×=20,∴AB=BE=20

∵∠D=∠C=∠BAE=∠E,∴cos∠D=.在RtABD中,cos∠D==,设BD=3xAD=5x,∴AB=4x,即4x=20,解得:x=5,∴AD=25,∴⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中   事件,小悦被抽中   事件(填不可能必然随机);第一次抽取卡片小悦被抽中的概率为   

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12)如图,在RtABC中,ACB90°AC8BC6CDAB于点D.P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线CD的长;

(2)CPQ的面积为S,求St之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,说明理由;

(3)t为何值时,CPQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40kmB处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距kmC处.

(1)求该轮船航行的速度(保留精确结果);

(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以的边为边,向外作等边和等边三角形,连接相交于点.

(1)求证:;

(2)的度数;

(3)请直接写出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,∠C90°AC20BC10PQABPQ两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点AC重合,那么当点P运动到什么位置时,才能使ABCAPQ全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ly=x,过点A1(1,0)作A1B1x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为_______

查看答案和解析>>

同步练习册答案