精英家教网 > 初中数学 > 题目详情

【题目】某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1 240元,3辆甲种客车和2辆乙种客车共需租金1 760元.求1辆甲种客车和1辆乙种客车的租金分别是多少元?

【答案】1辆甲种客车的租金是400元,1辆乙种客车的租金是280元.

【解析】

1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据“1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760,即可得出关于xy的二元一次方程组,解之即可得出结论.

解:设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据题意得 ,解得 .

答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.

篮球

排球

进价(元/个)

80

50

售价(元/个)

95

60

求:(1)购进篮球和排球各多少个?

(2)销售6个排球的利润与销售几个篮球的利润相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E、F分别在边AB和边AC上,且∠EDF=90°,则下列结论一定成立的是_______

①△ADF≌△BDE

②S四边形AEDF=S△ABC

③BE+CF=AD

④EF=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD的位置如图所示,解答下列问题:

(1)将四边形ABCD先向左平移4格,再向下平移6格,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1

(2)将四边形A1B1C1D1绕点A1逆时针旋转90°得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x=的抛物线与y轴交于点C(0,﹣3),与x轴交于A、B两点(点A在点B的左侧),AB=5

(1)求A、B两点的坐标及该抛物线对应的解析式;

(2)DBC的中点,延长OD与抛物线在第四象限内交于点E,连结AE、BE.

①求点E的坐标;

②判断ABE的形状,并说明理由;

(3)在x轴下方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育大课间活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:

1)在这项调查中,共调查了多少名学生?

2)请计算本项调查中喜欢立定跳远的学生人数和所占百分比,并将两个统计图补充完整;

3)若调查到喜欢跳绳5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形的一边轴的正半轴上,点的坐标为 ,动点从原点出发,在线段上以每秒2个单位的速度向点匀速运动,动点从原点出发,沿轴的正半轴以每秒1个单位的速度向上匀速运动,过点轴的平行线分别交,设动点同时出发,当点到达点时,点也停止运动,他们运动的时间为

1)点的坐标为_____,的坐标为____

2)当为何值时,四边形为平行四边形;

3)是否存在某一时刻,使为直角三角形?若存在,请求出此时的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片中,边上一点所叠纸片使点与点重合,其中为折痕,连结

(1)求证:四边形是菱形;

(2)若,求的长.

查看答案和解析>>

同步练习册答案