精英家教网 > 初中数学 > 题目详情

【题目】在平行四边形ABCD中,EBC边上一点,FDE上一点,若∠B=∠AFEAB=AF

求证:(1△ADF≌△DEC.(2BE=EF

【答案】1)见解析;(2)见解析

【解析】

1)根据平行四边形的性质可得DC=ABAD=BCABCD,然后再证明AF=DC,∠ADF=DEC,∠AFD=C,利用AAS可判定ADF≌△DEC

2)根据全等三角形的性质得出AD=DEDF=EC,再证出BC=DE,即可得出结论.

1)证明:∵四边形ABCD是平行四边形,

DC=ABAD=BCAB∥CD

∠ADF=∠DEC∠B+∠C=180°

∠AFE+∠AFD=180°∠B=∠AFE

∠AFD=∠C

AB=AF

AF=DC

△ADF△DEC

△ADF△DECAAS);

2)证明:∵△ADF△DEC

AD=DEDF=EC

又∵AD=BC

BC=DE

BC-EC=DE-DF

BE=EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形.若显示屏AO与键盘BO长均为24cm,点P为眼睛所在位置,DAO的中点,连接PD,且PDAO(此时点P为最佳视角),点COB的延长线上,PCBCBC12cm.

1)当PA45cm时,求PC的长;

2)当∠AOC115°时,线段PC的长比(1)中线段PC的长是增大还是减小?请通过计算说明.(结果精确到0.1cmsin65°≈0.91cos65°≈0.42tan65°≈2.14sin25°≈0.42cos25°≈0.91tan25°≈0.47).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,ACBD交于点E。

(1)求证:DC2=CE·AC;

(2)若AE=2EC,求之值;

(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若SACH,求EC之长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,若AB=2,∠ACB=30°,则线段CD的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过AB两点,在第一象限的抛物线上取一点D,过点DDCx轴于点C,交直线AB于点E

1)求抛物线的函数表达式

2)是否存在点D,使得BDEACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;

3)如图2F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DFFG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=4BC=5∠ABC=60° 按以下步骤作图:C为圆心,以适当长为半径做弧,交CBCDMN两点;分别以MN为圆心,以大于MN的长为半径作弧,两弧相交于点E,作射线CEBD于点O,交AD边于点F;则BO的长度为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE1.05米,求篮板下沿E点与地面的距离.(结果精确到01m,参考数据:sin54°≈0.80 cos54°≈0.60tan54°1.33

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y1kx+3与双曲线(x0)交于点PPAx轴于点APBy轴于点B,直线y1kx+3分别交x轴、y轴于点C和点D,且SDBP27

1)求ODAP的长;

2)求m的值;

3)如图2,点M为直线BP上的一个动点,连接CBCM,当△BCM为等腰三角形时,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产的一种果汁饮料由AB两种水果配制而成,其比例与成本如下方表格所示,已知该饮料的成本价为8/千克,按现价售出后可获利润50%,每个月可出售27500瓶.

1)求m的值;

2)由于物价上涨,A水果成本提高了25%B水果成本提高了20%,在不改变售价的情况下,若要保持每个月的利润不减少,则现在至少需要售出多少瓶饮料?

查看答案和解析>>

同步练习册答案