【题目】如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,若AB=2,∠ACB=30°,则线段CD的长度为______.
科目:初中数学 来源: 题型:
【题目】如图,函数y=x(x≥0)的图象与反比例函数y=的图象交于点A,若点A绕点B(,0)顺时针旋转90°后,得到的点A'仍在y=的图象上,则点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.
已知:线段AB.
求作:菱形ACBD.
作法:如图,
①以点A为圆心,以AB长为半径作⊙A;
②以点 B为圆心,以AB长为半径作⊙B,
交⊙A 于C,D两点;
③连接AC,BC,BD,AD.
所以四边形ACBD就是所求作的菱形.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∵点B,C,D在⊙A上,
∴AB=AC=AD( )(填推理的依据).
同理 ∵点A,C,D在⊙B上,
∴AB=BC=BD.
∴ = = = .
∴四边形ACBD是菱形. ( )(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C.
(1)如图1,若OB=2OA=2OC
①求抛物线的解析式;
②若M是第一象限抛物线上一点,若cos∠MAC=,求M点坐标.
(2)如图2,直线EF∥x轴与抛物线相交于E、F两点,P为EF下方抛物线上一点,且P(m,﹣2).若∠EPF=90°,则EF所在直线的纵坐标是否为定值,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是除0外的全体实数,与的几组对应值列表如下:
… | 1 | 2 | 3 | 6 | … | |||||
… | 1 | 2 | 6 | 1 | 3 | 2 | 1 | … |
其中,_________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出一条函数性质.
(4)进一步探究函数图象发现:
①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________.
②方程有_______个实效根;
③关于的方程有2个实数根,的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.
(1)求证:DF是⊙O的切线.
(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com