一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a= (小时).
![]()
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:解答题
木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板锯一个尽可能大的圆。
(1)写出方案一中的圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=
(
),圆的半径为
,
①求
关于
的函数解析式;
②当
取何值时圆的半径最大?最大半径是多少?并说明四种方案中,哪一个圆形桌面的半径最大?
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题
如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )
![]()
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题
为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
“通话时长” (x分钟) | 0<x≤3 | 3<x≤6 | 6<x≤9 | 9<x≤12 | 12<x≤15 | 15<x≤18 |
次数 | 36 | a | 8 | 12 | 8 | 12 |
根据表、图提供的信息,解答下面的问题:
(1)a= ,样本容量是 ;
(2)求样本中“通话时长”不超过9分钟的频率: ;
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:选择题
如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:填空题
如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B= °.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:解答题
已知二次函数
,其图像抛物线交
轴的于点A(1,0)、B(3,0),交y轴于点C.直线
过点C,且交抛物线于另一点E(点E不与点A、B重合).
(1)求此二次函数关系式;
(2)若直线
经过抛物线顶点D,交
轴于点F,且
∥
,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.
(3)若过点A作AG⊥
轴,交直线
于点G,连OG、BE,试证明OG∥BE.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏淮安卷)数学(解析版) 题型:解答题
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com