【题目】(1)如图1,∠A=60°,AC=1,AB=2求BC的长;
(2)如图2,在△ABC中,试证明:BC2=AC2+AB2-2ACABcosA.
【答案】(1);(2)见解析.
【解析】
(1)取AB的中点D,连结CD ,易证△ACD为等边三角形,然后可得AC=AD=DC=BD=1,求出∠B=30°,∠ACB=90°,利用勾股定理可求BC;
(2)作于H,由勾股定理得,整理可得
,然后在Rt△AHC中有,代入整理好的式子即可证明结论.
证明:(1)如图1所示,取AB的中点D,连结CD ,
∵AC=1,AB=2,∴AC=AD=BD=1,
又∵∠A=60°,∴△ACD为等边三角形,
∴AC=AD=DC=BD=1,∠ADC=60°,
∴∠B=∠DCB ,
又∵∠ADC=∠B+∠DCB,
∴∠B=30°,∠ACB=90°,
∴;
(2)如图2所示,作于H,
则由勾股定理得:,
∴,
又∵在Rt△AHC中,,
∴
科目:初中数学 来源: 题型:
【题目】实践操作
如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中表明相应的字母.(保留作图痕迹,不写作法)
(1)①作的平分线,交于点;②以为圆心,为半径作圆.
综合运用
在你所作的图中,
(2)与⊙的位置关系是 ;(直接写出答案)
(3)若,,求⊙的半径.
(4)在(3)的条件下,求以为轴把△ABC旋转一周得到的圆锥的侧面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).
(1)如图1,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连结AM交BF于点H,连结GA,GM.
①求证:AH=HM;
②请判断△GAM的形状,并给予证明;
③请用等式表示线段AM,BD,DF的数量关系,并说明理由.
(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将抛物线y=mx2﹣x﹣m(m≠0)在直线x=﹣1与直线x=1之间的部分记作图象C,对于图象C上任意一点P(a,b)均有﹣1≤b≤1成立,则m的取值范围是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+c(a≠0)与x轴交于点A和点B(,0),与y轴交于点C(0,2),点P(2,t)是该抛物线上一点.
(1)求此抛物线的解析式及t的值;
(2)若点D是y轴上一点,线段PD绕点D逆时针旋转90°后,点P的对应点P′恰好也落在此抛物线上,求点D的坐标;
(3)如图2,直线l:y=kx+b交该抛物线于M、N两点,且满足MC⊥NC,设点P到直线l的距离是d,求d的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.
(1)求抛物线的解析式;
(2)连接AE,求h为何值时,△AEF的面积最大.
(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com