【题目】如图,将等腰直角三角板ABC的直角顶点C放在直线l上,从另两个顶点A、B分别作l的垂线,垂足分别为D、E.
(1)找出图中的全等三角形,并加以证明;
(2)若DE=a,求直角梯形DABE的面积.
【答案】(1)见解析;(2).
【解析】
(1)根据AAS定理证明△ADC≌△CEB;
(2)根据全等三角形的性质得到AD=CE,CD=BE,根据梯形的面积公式计算即可.
解:(1)△ACD≌△CBE,证明如下:
∵△ABC是等腰直角三角形,C为直角顶点,∴AC=CB
∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°
在Rt△ACD中,∠DAC+∠DCA=90°
∵∠ACB=900,∴∠ECB+∠DCA=90°,
∴∠DAC=∠ECB
在△ACD和△CBE中,
∴△ACD≌△CBE
(2)由(1)知,△ACD≌△CBE,∴AD=CE,CD=BE
∴AD+BE=CE+CD=DE=a,
∴直角梯形DABE的面积=×(AD+BE)×DE=.
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必须添加一个条件,则下列所添条件不恰当的是 ( ).
A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知分式:
(1)化简这个分式
(2)把分式A化简结果的分子与分母同时加上3后得到分式B,问:当a>2时,分式B的值较原来分式A的值是变大了还是变小了?试说明理由。
(3)若A的值是整数,且a也为整数,求出所有符合条件a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:
(1)图象的另一支在第 象限;在每个象限内,y随x的增大而 ;
(2)若此反比例函数的图象经过点(-2,3),求m的值.点A(-5,2)是否在这个函数图象上?点B(-3,4)呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
证明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(两直线平行,内错角相等)
______=______(两直线平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:
①线段PB= ,PC= ;
②猜想:PA2,PB2,PQ2三者之间的数量关系为 ;
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;
(3)若动点P满足,求的值.(提示:请利用备用图进行探求)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,先描出点,点.
(1)描出点关于轴的对称点的位置,写出的坐标 ;
(2)用尺规在轴上找一点,使的值最小(保留作图痕迹);
(3)用尺规在轴上找一点,使(保留作图痕迹).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com