精英家教网 > 初中数学 > 题目详情
已知关于x的方程
(1)当k取何值时,方程有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.
(1);(2)k=1,();(3).

试题分析:(1)要使方程有两个实数根,必须满足两个条件:从而可求出k的取值范围;
(2)令y=0,得到一个一元二次方程,用含有k的代数式表示方程的解,根据题意求出k的值.
(3)由(2)知k=1所以抛物线方程为y=x2-5x+4,它与x轴的交点坐标为A(1,0),B(4,0),顶点坐标为(),由此可得n的取值范围为.
试题解析:(1)依题意得
整理得
∵当k取任何值时,

∴当时,方程总有两个实数根.
(2)解方程,得
均为整数且k为正整数,∴取k=1.



∴抛物线的顶点坐标为().
(3)  
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明利用暑假20天(8月5日至24日)参与了一家网店经营的社会实践.负责在网络上销售一种新款的SD卡,每张成本价为20元.第天销售的相关信息如下表所示.
销售量p(张)

销售单价q(元/张)

 
(1)请计算哪一天SD卡的销售单价为35元?
(2)在这20天中,在网络上这款销售SD卡在哪一天获得利润最大?这一天赚了多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.若以AB为一底边的梯形ABCD的面积为9.
求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为   秒时,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数的图象经过点P(2,8),则该图象必经过点
A.(2,-8)B.(-2,8)C.(8,-2)D.(-8,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线先沿轴向右平移1个单位, 再沿轴向上移2个单位,所得抛物线的解析式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A.D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内。

(1)求二次函数的解析式;
(2)设点D的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.

(1)求此抛物线的解析式和直线的解析式;
(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;
(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数的图象经过x轴上的二点,它们的坐标分别是:(-4,0),(2,0).当x的取值范围是       时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

同步练习册答案