精英家教网 > 初中数学 > 题目详情

【题目】如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,

1)绿化的面积是多少平方米?(用含字母ab的式子表示)

2)求出当a20b12时的绿化面积.

【答案】1)(5a2+3ab)平方米;(22720平方米

【解析】

(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.

(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.

解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,

答:绿化的面积是(5a2+3ab)平方米;

(2)当a=20,b=12时

5a2+3ab=5×202+3×20×12=2000+720=2720,

答:当a=20,b=12时的绿化面积是2720平方米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在等腰RtABC中,ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF

1求证:ADF≌△CEF

2试证明DFE是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC经过一次平移后得到A′B′C′,图中标出了点B的对应点B′

(1)在给定方格纸中画出平移后的A′B′C′

(2)画出AB边上的中线CDBC边上的高线AE

(3)线段AA′与线段BB′的关系是:

(4) 求四边形ACBB′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC的两条外角平分线APCP相交于点PPH⊥ACH.若∠ABC=60°,则下面的结论:①∠ABP=30°②∠APC=60°③△ABC≌△APC④PABC⑤∠APH=∠BPC,其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知BADBCE均为等腰直角三角形,∠BAD=BCE=90°,点MDE的中点.过点EAD平行的直线交射线AM于点N

(1)当ABC三点在同一直线上时(如图1),求证:MAN的中点;

(2)将图1中BCE绕点B旋转,当ABE三点在同一直线上时(如图2),求证:CAN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边ABC和等边DCE,连结AE、BD.

(1)求证:BD=AE;

(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断CMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.A23),B31),C﹣2﹣2)三点在格点上.

1作出△ABC关于y轴对称的△A1B1C1

2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;

3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y= (x﹣5)(x+m)(m是常数,m>0)的图象与x轴交于点A和点B(点A在点B的右侧)与y轴交于点C,连接AC.
(1)用含m的代数式表示点B和点C的坐标;
(2)垂直于x轴的直线l在点A与点B之间平行移动,且与抛物线和直线AC分别交于点M、N,设点M的横坐标为t,线段MN的长为p.
①当t=2时,求p的值;
②若m≤1,则当t为何值时,p取得最大值,并求出这个最大值.

查看答案和解析>>

同步练习册答案