精英家教网 > 初中数学 > 题目详情

【题目】如图在等腰RtABC中,ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF

1求证:ADF≌△CEF

2试证明DFE是等腰直角三角形

【答案】1证明见解析;2证明见解析

【解析】

试题分析:1根据在等腰直角ABC中,ACB=90°,AC=BC,利用F是AB中点,A=FCE=ACF=45°,即可证明:ADF≌△CEF

2利用ADF≌△CEF,AFD+DFC=CFE+DFC,和AFC=90°即可证明DFE是等腰直角三角形

试题解析:1在等腰直角ABC中,ACB=90°,AC=BC,

∴∠A=B=45°

F是AB中点,

∴∠ACF=FCB=45°

即,A=FCE=ACF=45°,且AF=CF,

ADF与CEF中,

∴△ADF≌△CEF;

21可知ADF≌△CEF,

DF=FE,

∴△DFE是等腰三角形,

∵∠AFD=CFE,

∴∠AFD+DFC=CFE+DFC,

∴∠AFC=DFE,

∵∠AFC=90°

∴∠DFE=90°

∴△DFE是等腰直角三角形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】工人师傅做铝合金窗框分下面三个步骤进行:

(1)先截出两对符合规格的铝合金窗料(如图),使AB=CD,EF=GH;

(2)摆放成如图的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;

(3)将直角尺靠紧窗框的一个角(如图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(2xy)(3x22xy4y2)

(2)(m2nmn1)·(6m3n)

(3)(3x2y)2·(4xy25y36x1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+ x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6, )在抛物线上,直线AC与y轴交于点D.

(1)求c的值及直线AC的函数表达式;
(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m,求AN的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,AD=AC,ADAC,EAB的中点,FAC延长线上一点.

(1)EDEF,求证:ED=EF;

(2)(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)ED=EF,EDEF垂直吗?若垂直给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,

1)绿化的面积是多少平方米?(用含字母ab的式子表示)

2)求出当a20b12时的绿化面积.

查看答案和解析>>

同步练习册答案