精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c经过原点和点A60),与其对称轴交于点BP是抛物线y=x2+bx+c上一动点,且在x轴上方.过点Px轴的垂线交动抛物线y=xh2h为常数)于点Q,过点QPQ的垂线交动抛物线y=xh2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m

1)求抛物线y=x2+bx+c的函数关系式及点B的坐标;

(2)当h=0时.

求证:

△PQQ′△OAB重叠部分图形的周长为l,求lm之间的函数关系式;

(3)当h≠0时,是否存在点P,使四边形OAQQ′为菱形?若存在,请直接写出h的值;若不存在,请说明理由.

【答案】1y=x32+4,点B的坐标为(3,4);(2)证明见解析②l=(3)存在,h=3﹣2或3+2时,四边形OAQQ′为菱形

【解析】试题分析:1)用待定系数法求得函数解析式,把解析式化为顶点式,直接写出点B的坐标即可;(2)①当h=0时,求得抛物线的解析式,用m表示出点PQ的坐标再用m表示出PQQQ′的长,计算即可得结论;②分当0m≤3时和当3m6时两种情况求lm之间的函数关系式;3存在,当四边形OQ′1Q1A是菱形时,OQ′1=OA=Q1Q′1=6

当抛物线的顶点是原点时,可求得Q1点横坐标为3,将x=3代入y=x2,得 y=-4,由于是平移,可知Q点纵坐标不变,在RTOHQ′1,中,OH=4OQ′1=6根据勾股定理求得HQ′1=2即可得h的值(根据函数的对称性).

试题解析:

(1)∵抛物线y=﹣x2+bx+c过(0,0)和点A(6,0)

解得

抛物线y=﹣x2+bx+c的函数关系式为:y=﹣x2+8x,

∴y=﹣(x﹣3)2+4,

点B的坐标为(3,4);

(2)①证明:h=0时,抛物线为y=﹣x2

设P(m,﹣m2+m),Q(m,﹣m2),

∴PQ=m,QQ′=2m,

==

如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,

=,∠PQQ′=∠BMO=90°,

∴△PQQ′∽△BMO,

∴∠QPQ′=∠OBM,

∵EF∥BM,

∴∠OEF=∠OBM,

∴∠OEF=∠QPQ′,

∴OE∥PQ′,

=

∴EF=,OE=

∴l=OF+EF+OE=m++m=4m,

当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HMOA于M.

∵AF=6﹣m,tan∠EAF==

∴EF=(6﹣m),AE=

∵tan∠PGF==,PF=﹣x2+x,

∴GF=﹣m2+2m,

∴AG=﹣m2+m+6,

∴GM=AM=﹣m2+m+3,

∵HG=HA==﹣m2+m+5,

∴l=GH+EH+EF+FG=﹣m2+4m+8.

综上所述l=

(3)如图3中,存在,

当四边形OQ′1Q1A是菱形时,OQ′1=OA=Q1Q′1=6,

当顶点在原点时,Q1点横坐标为3,将x=3代入

y=﹣x2,得 y=-4,由于是平移,Q点纵坐标不变,

点Q1的纵坐标为-4,

在RT△OHQ′1,中,OH=4,OQ′1=6,

∴HQ′1=2

∴h=3﹣2或3+2

综上所述h=3﹣2或3+2时,四边形OAQQ′为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:

(1)求这次被抽查形体测评的学生一共有多少人?

(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;

(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?

【答案】(1)500名;(2)75名;(3)2.5

【解析】试题分析:(1)用类型人数除以所占百分比就是总人数.(2)用总人数乘以15%.

(3) 坐姿和站姿不良的学生的学生的百分比乘以总人数.

试题解析:

(1)解:100÷20%=500(名),

答:这次被抽查形体测评的学生一共是500名;

(2)解:三姿良好的学生人数:500×15%=75名,

补全统计图如图所示;

(3)解:5×(20%+30%)=2.5万,

答:全市初中生中,坐姿和站姿不良的学生有2.5万人.

型】解答
束】
24

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.

(1)求证:BF是⊙O的切线;

(2)已知圆的半径为1,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5A型号和1B型号计算器,可获利润76元;销售6A型号和3B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,点MCD中点,将△MBC沿BM翻折至△MBE,若∠AME α,∠ABE β,则 α β 之间的数量关系为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】安全教育平台是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与防溺水教育的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;

C.仅家长自己参与; D.家长和学生都未参与.

请根据图中提供的信息,解答下列问题:

(1)在这次抽样调查中,共调查了________名学生;

(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;

(3)根据抽样调查结果,估计该校2000名学生中家长和学生都未参与的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】共享经济来临,某企业决定在无锡投入共享单车(自行车)和共享电单车(电动车)共2000辆,已知每辆共享单车成本380元,每台共享电单车成本1500元,2辆共享单车和1辆共享电单车每周毛利31元,4辆共享单车和3辆共享电单车每周毛利81元,

1)求共享单车和共享电单车每周每辆分别可以盈利多少元?

2)为考虑投资回报率,该企业计划投入成本不超过174万元,每周的毛利不低于23050元,现要求投入的单车数量为10的倍数,请你列举出所有投入资金方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线EF//MN,点AB分别为EFMN上的动点,且ACB= aBD平分CBNEFD

1)若FDB=120°,a=90°.如图1,求MBCEAC的度数?

2)延长AC交直线MNG,这时a =80°,如图2GH平分AGBDB于点H,问GHB是否为定值,若是,请求值.若不是,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知都是整数,且,则__________

查看答案和解析>>

同步练习册答案