【题目】如图,抛物线y=﹣x2+bx+c经过原点和点A(6,0),与其对称轴交于点B,P是抛物线y=﹣x2+bx+c上一动点,且在x轴上方.过点P作x轴的垂线交动抛物线y=﹣(x﹣h)2(h为常数)于点Q,过点Q作PQ的垂线交动抛物线y=﹣(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.
(1)求抛物线y=﹣x2+bx+c的函数关系式及点B的坐标;
(2)当h=0时.
①求证: ;
②设△PQQ′与△OAB重叠部分图形的周长为l,求l与m之间的函数关系式;
(3)当h≠0时,是否存在点P,使四边形OAQQ′为菱形?若存在,请直接写出h的值;若不存在,请说明理由.
【答案】(1)y=﹣(x﹣3)2+4,点B的坐标为(3,4);(2)①证明见解析②l=(3)存在,h=3﹣2或3+2时,四边形OAQQ′为菱形
【解析】试题分析:(1)用待定系数法求得函数解析式,把解析式化为顶点式,直接写出点B的坐标即可;(2)①当h=0时,求得抛物线的解析式,用m表示出点P、Q的坐标,再用m表示出PQ、QQ′的长,计算即可得结论;②分当0<m≤3时和当3<m<6时两种情况求l与m之间的函数关系式;(3)存在,当四边形OQ′1Q1A是菱形时,OQ′1=OA=Q1Q′1=6,
当抛物线的顶点是原点时,可求得Q1点横坐标为3,将x=3代入y=﹣x2,得 y=-4,由于是平移,可知Q点纵坐标不变,在RT△OHQ′1,中,OH=4,OQ′1=6,根据勾股定理求得HQ′1=2,即可得h的值(根据函数的对称性).
试题解析:
(1)∵抛物线y=﹣x2+bx+c过(0,0)和点A(6,0)
∴,
解得,
∴抛物线y=﹣x2+bx+c的函数关系式为:y=﹣x2+8x,
∴y=﹣(x﹣3)2+4,
∴点B的坐标为(3,4);
(2)①证明:∵h=0时,抛物线为y=﹣x2,
设P(m,﹣m2+m),Q(m,﹣m2),
∴PQ=m,QQ′=2m,
∴==;
②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,
∵=,∠PQQ′=∠BMO=90°,
∴△PQQ′∽△BMO,
∴∠QPQ′=∠OBM,
∵EF∥BM,
∴∠OEF=∠OBM,
∴∠OEF=∠QPQ′,
∴OE∥PQ′,
∵=,
∴EF=,OE=,
∴l=OF+EF+OE=m++m=4m,
当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥OA于M.
∵AF=6﹣m,tan∠EAF==,
∴EF=(6﹣m),AE=,
∵tan∠PGF==,PF=﹣x2+x,
∴GF=﹣m2+2m,
∴AG=﹣m2+m+6,
∴GM=AM=﹣m2+m+3,
∵HG=HA==﹣m2+m+5,
∴l=GH+EH+EF+FG=﹣m2+4m+8.
综上所述l=,
(3)如图3中,存在,
当四边形OQ′1Q1A是菱形时,OQ′1=OA=Q1Q′1=6,
当顶点在原点时,Q1点横坐标为3,将x=3代入
y=﹣x2,得 y=-4,由于是平移,Q点纵坐标不变,
∴点Q1的纵坐标为-4,
在RT△OHQ′1,中,OH=4,OQ′1=6,
∴HQ′1=2,
∴h=3﹣2或3+2,
综上所述h=3﹣2或3+2时,四边形OAQQ′为菱形.
科目:初中数学 来源: 题型:
【题目】为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)求这次被抽查形体测评的学生一共有多少人?
(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;
(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?
【答案】(1)500名;(2)75名;(3)2.5万
【解析】试题分析:(1)用类型人数除以所占百分比就是总人数.(2)用总人数乘以15%.
(3) 坐姿和站姿不良的学生的学生的百分比乘以总人数.
试题解析:
(1)解:100÷20%=500(名),
答:这次被抽查形体测评的学生一共是500名;
(2)解:三姿良好的学生人数:500×15%=75名,
补全统计图如图所示;
(3)解:5万×(20%+30%)=2.5万,
答:全市初中生中,坐姿和站姿不良的学生有2.5万人.
【题型】解答题
【结束】
24
【题目】如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.
(1)求证:PE=DH;
(2)若AB=10,BC=8,求DP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.
(1)求证:BF是⊙O的切线;
(2)已知圆的半径为1,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,则 α 与 β 之间的数量关系为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;
C.仅家长自己参与; D.家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】共享经济来临,某企业决定在无锡投入共享单车(自行车)和共享电单车(电动车)共2000辆,已知每辆共享单车成本380元,每台共享电单车成本1500元,2辆共享单车和1辆共享电单车每周毛利31元,4辆共享单车和3辆共享电单车每周毛利81元,
(1)求共享单车和共享电单车每周每辆分别可以盈利多少元?
(2)为考虑投资回报率,该企业计划投入成本不超过174万元,每周的毛利不低于23050元,现要求投入的单车数量为10的倍数,请你列举出所有投入资金方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com