已知:如图,△ABC内接于⊙O,
于H,
,过A点的直线与OC的延长线交于点D,
,
.
(1)求证:AD是⊙O的切线;
(2)若E为⊙O上一动点,连接AE交直线OD于点P,问:是否存在点P,使得PA+PH的值最小,若存在求PA+PH的最小值,若不存在,说明理由.
![]()
(1)证明见解析;(2)存在,
.
【解析】
试题分析:(1)连接AO,求证
即可.
(2)求出OH的长,作A关于OD的对称点F,连接FH交OD于点P,根据对称性及两点之间线段最短可知此点P使PA+PH的值最小.
(1)如图,连接AO.
∵
,∴
.
∵AO=CO,∴
.∴
.
∴AD是⊙O的切线 .
![]()
(2)存在.
∵
,OA=OC,∴
AOC为等边三角形.
在Rt
AOD中,∵
,
,∴
.
∵
,∴
.
如图,作A关于OD的对称点F,连接FH交OD于点P,根据对称性及两点之间线段最短可知此点P使PA+PH的值最小.
∴
.∴
.
∵
,OF=10,∴
,即PA+PH的最小值为
.
![]()
考点:1.等边三角形的判定和性质;2.切线的判定;3.轴对称的应用(最短线路问题);4.锐角三角函数定义;5.特殊角的三角函数值.
科目:初中数学 来源:2014年北京市海淀区中考二模数学试卷(解析版) 题型:解答题
对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=
时,
①在P1(0,-3),P2(4,6),P3(
,2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;
②若点P在直线
上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;
(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P 在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市海淀区中考二模数学试卷(解析版) 题型:选择题
如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )
![]()
A.点M B.点N C.点P D.点Q
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考一模数学试卷(解析版) 题型:解答题
如图,点A在反比例函数
的图象上.
(1) 求反比例函数
的解析式;
(2)在y轴上是否存在点P,使得△AOP是直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com