如图,点A在反比例函数
的图象上.
(1) 求反比例函数
的解析式;
(2)在y轴上是否存在点P,使得△AOP是直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由.
![]()
科目:初中数学 来源:2014年北京市西城区中考二模数学试卷(解析版) 题型:填空题
如图,在平面直角坐标系xOy中,已知抛物线(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A 2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,An,…,及抛物线C1,C2,…,Cn,….则点A4的坐标为 ;Cn的顶点坐标为 (n为正整数,用含n的代数式表示) .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考二模数学试卷(解析版) 题型:解答题
已知:如图,△ABC内接于⊙O,
于H,
,过A点的直线与OC的延长线交于点D,
,
.
(1)求证:AD是⊙O的切线;
(2)若E为⊙O上一动点,连接AE交直线OD于点P,问:是否存在点P,使得PA+PH的值最小,若存在求PA+PH的最小值,若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考二模数学试卷(解析版) 题型:选择题
从1.2. 3.4.5这五个数中随机取出一个数,取出的数是某个整数的平方数的概率是 ( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考一模数学试卷(解析版) 题型:解答题
阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为
,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.
请回答:
(1)图1中△ABC的面积为 ;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1) .
①利用构图法在答题卡的图2中画出三边长分别为
的格点△DEF;
②计算△DEF的面积为 .
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若
,
,则六边形AQRDEF的面积为__________.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考一模数学试卷(解析版) 题型:填空题
如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)都在函数
(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An﹣1An都在x轴上(n是大于或等于2的正整数),已知点A1的坐标为(2,0),则点P1的坐标为 ;点P2的坐标为 ;点Pn的坐标为 (用含n的式子表示).
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市怀柔区中考一模数学试卷(解析版) 题型:解答题
已知:如图,点A、B、C在同一直线上,AD∥CE,AD=AC,∠D=∠CAE.
求证:DB=AE.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市密云县中考一模数学试卷(解析版) 题型:解答题
阅读并操作:
如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).
![]()
请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.
(1)新图形为平行四边形;
![]()
(2)新图形为等腰梯形.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com