精英家教网 > 初中数学 > 题目详情
2.已知正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF,垂足为H,BH的延长线分别交AC、CD于点G、P.
(1)求证:AE=BG;
(2)求证:GO•AG=CG•AO.

分析 (1)利用“ASA”证明△OAE≌△OBG可得到AE=BG;
(2)由△OAE≌△OBG得到OG=OE,再由AB∥CD得到PC:AB=CG:AG,即PC:BC=CG:AG,再证明Rt△OAE∽Rt△CBP得到OA:BC=OE:PC,用等线段代换得到PC:BC=OG:OA,利用等量代换得到OG:OA=CG:AG,然后利用比例性质即可得到结论.

解答 证明:(1)∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠AHG=90°,
∵∠GAH+∠AGH=90°,∠OBG+∠AGH=90°,
∴∠GAH=∠OBG,
在△OAE和△OBG中,
$\left\{\begin{array}{l}{∠OAE=∠OBG}\\{OA=OB}\\{∠AOE=∠BOG}\end{array}\right.$,
∴△OAE≌△OBG(ASA),
∴AE=BG;
(2)∵△OAE≌△OBG,
∴OG=OE,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,AB∥CD
∴PC:AB=CG:AG,
∴PC:BC=CG:AG,
∵∠AHG=∠ABC=90°
∴∠FAB+∠ABH=∠CBP+∠ABH=90°,
∴∠FAB=∠CBP,
∵AF平分∠CAB,
∴∠FAC=∠FAB,
∴∠FAC=∠CBP,
∴Rt△OAE∽Rt△CBP,
∴OA:BC=OE:PC,
∵OE=OG,
即PC:BC=OG:OA,
∴OG:OA=CG:AG,
即GO•AG=CG•AO.

点评 本题考查了相似三角形的判定与性质:两个三角形相似对应角相等,对应边的比相等.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.解决本题的关键是灵活应用正方形的性质和利用结论找相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,四边形ABCD中,∠A=∠C=90度,AB=AD,若这个四边形的面积为24,则AC的长是4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:AB为⊙O的直径,弦CD⊥AB于点E,F为⊙O上一点,且FB=FD.
(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;
(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;
(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在学习完矩形的内容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.
操作发现:
如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.
(1)小组成员甲发现“AE=CF”,请你完成证明;
(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是平行四边形,当AE的长为$\frac{5}{3}$时,四边形BEDF是菱形”;
探究发现:
受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD内的点A′,C′处.
(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;
(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,直线y=-$\frac{3}{4}$x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.
(1)填空:b=3;
(2)求点D的坐标;
(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知在△ABC中,AB=AC=6,AH⊥BC,垂足为点H.点D在边AB上,且AD=2,联结CD交AH于点E.
(1)如图1,如果AE=AD,求AH的长;
(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC的长;
(3)如图3,联结DF.设DF=x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知凸四边形ABCD四边的长AB、BC、AD、DC分别为1,9,9,8,且cosD=$\frac{7}{18}$,考虑下列命题:①四边形ABCD是梯形;②四边形ABCD的面积是$\frac{45\sqrt{11}}{4}$;③若M是BC的中点,则AM⊥DM;④若M是BC上一点,且AM⊥DM,则M是BC中点.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.盐城市2015年初中毕业生人数达10.1万.数据10.1万用科学记数法表示为(  )
A.1.01×10B.10.1×104C.1.01×105D.0.101×106

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.长度为2cm、3cm、6cm、7cm、8cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有6个.

查看答案和解析>>

同步练习册答案