【题目】如图,为的直径,是上的一点,过点的直线交的延长线于点, ,垂足为,是与的交点,平分
(1)求证:是的切线
(2)若, ,求图中阴影部分的面积
【答案】(1)见解析;(2)阴影部分的面积为8-
【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;
(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD-S扇形OBC即可得到答案.
(1)连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAE,
∴∠OAC=∠CAE,
∴∠OCA=∠CAE,
∴OC∥AE,
∴∠OCD=∠E,
∵AE⊥DE,
∴∠E=90°,
∴∠OCD=90°,
∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径,
∴CD是圆O的切线;
(2)在Rt△AED中,
∵∠D=30°,AE=6,
∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,
∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD=
∴S△OCD=
∵∠D=30°,∠OCD=90°,
∴∠DOC=60°,
∴S扇形OBC=×π×OC2=π,
∵S阴影=S△COD-S扇形OBC
∴S阴影=8-,
∴阴影部分的面积为8-
科目:初中数学 来源: 题型:
【题目】杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知长方形中,,点在边上,由往运动,速度为,运动时间为秒,将沿着翻折至,点对应点为,所在直线与边交与点,
(1)如图,当时,求证:;
(2)如图,当为何值时,点恰好落在边上;
(3)如图,当时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是( )
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点P,Q分别在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下面结论错误是( )
A. △BPR≌△QPSB. AS=ARC. QP∥ABD. ∠BAP=∠CAP
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com