精英家教网 > 初中数学 > 题目详情

【题目】已知将一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?

(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?

(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

【答案】(1)30°;(2) 60°;(3) 总是75°

【解析】

利用三角板角的特征和角平分线的定义解答,
(1)根据余角的定义即可得到结论;
(2)由角平分线的定义得到∠BOC= COD=×60°=30°,根据余角的定义即可得到结论;
(3)根据角平分线的定义得到BOD+AOC)=×30°=15°,然后根据角的和差即可得到结果.

解:(1)

(2)BOC=COD=×60°=30°,

∴∠AOC=AOB﹣BOC=90°﹣30°=60°;

(3)BOD+AOC=90°﹣COD=90°﹣60°=30°,

BOD+AOC)=×30°=15°,

MON=BOD+AOC)+COD=15°+60°=75°

即∠MON的度数不会发生变化,总是75°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
(1)这四个班参与大赛的学生共人;
(2)请你补全两幅统计图;
(3)求图1中甲班所对应的扇形圆心角的度数;
(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生上学期参加生涯规划社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:

参加社区活动次数的频数、频率

活动次数x

频数

频率

0<x≤3

10

0.20

3<x≤6

a

0.24

6<x≤9

16

0.32

9<x≤12

6

0.12

12<x≤15

b

m

15<x≤18

2

n

根据以上图表信息,解答下列问题:

(1)表中a= , b= , m= , n= .

(2)请把频数分布直方图补充完整(画图后请标注相应的数据);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB叫AE的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.

时间t(天)

0

5

10

15

20

25

30

日销售量
y1(百件)

0

25

40

45

40

25

0


(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;
(2)求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE= ,则∠CDE+∠ACD=(
A.60°
B.75°
C.90°
D.105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x-3(k1>0)的图象与x轴、y轴分别交于A,B两点,

与反比例函数y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.

(1) ①直接写出点C的坐标 (k1来表示)

②k2﹣k1=   

(2) BAC的中点,求反比例函数的表达式;

(3) (2)的条件下,设点Mx轴负半轴上一点,将线段MF绕点M按顺时针或逆时针方向旋转90°得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距2400米,甲、乙两人分别从AB两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A15分钟后甲到达B地.

(1)求甲每分钟走多少米?

(2)两人出发多少分钟后恰好相距480米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分∠ABCA=2C

1)若∠C=38°,则∠ABD=      

2)求证:BC=AB+AD

3)求证:BC2=AB2+ABAC

查看答案和解析>>

同步练习册答案