精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=k1x-3(k1>0)的图象与x轴、y轴分别交于A,B两点,

与反比例函数y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.

(1) ①直接写出点C的坐标 (k1来表示)

②k2﹣k1=   

(2) BAC的中点,求反比例函数的表达式;

(3) (2)的条件下,设点Mx轴负半轴上一点,将线段MF绕点M按顺时针或逆时针方向旋转90°得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.

【答案】(1)①C ; ②3;(2) ;(3)能,N.

【解析】分析:(1)①CE=1,可得点C横坐标-1,代入y=k1x-3,即可求出点C的纵坐标;②)联立y=k1x-3y=,然后把x=-1代入整理即可;

(2)先证明△CBE≌△ABO,可得OB=BE.求出 y=k1x-3y轴的交点B的坐标(-1,-3),可得C点的坐标(-1,-6),用待定系数法即可求出反比例函数解析式;

(3)MN绕点M顺时针旋转90°和MN绕点M逆时针旋转90°两种情况讨论解答即可.

详解:(1)①∵CE=1,

∴点C横坐标-1,

x=-1时,

y=k1x-3=- k1-3,

C(-1,- k1-3);

由题意得,

k1x-3=

x=-1代入得,

- k1-3=-k2

k2k1=3;

(2)∵BAC的中点,

AB=BC.

在△CBE和△ABO中,

∵∠CBE=∠ABO,

AB=BC

CEB=∠AOB=90°,

∴△CBE≌△ABO,

OB=BE.

x=0代入y=k1x-3得,

y=-3,

B(-1,-3),

C(-1,-6),

C(-1,-6)代入y=得,

k2=6,

.

(3)如图,当MN绕点M顺时针旋转90°时,点N在反比例函数图像上,作NGx轴于点G.

C(-1,-6)代入y=k1x-3得,

-k1-3=-6,

k1=3,

y=3x-3

得,

D(2,3),

OF=3.

∵∠1+∠2=90°,

∠1+∠3=90°,

∴∠2=∠3.

在△MOF和△NGM中,

∵∠2=∠3,

MGN=∠MOF,

MN=MF,

∴△MOF≌△NGM,

MG=OF=3.

Ma,0)(a<0),OG=-a-3,NG=OM=-a ,

N(a+3,a),

N(a+3,a)代入得,

a(a+3)=6,

,(舍去),

a+3=+3=,

N.

MN绕点M逆时针旋转90°时,点N在第二象限,此时点N不能落在反比例函数图像上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
1)求证:四边形AECF是平行四边形;
2)若AB=6AC=10,求四边形AECF的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(
A.a<0,b<0,c>0
B.﹣ =1
C.a+b+c<0
D.关于x的方程x2+bx+c=﹣1有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知将一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?

(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?

(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③ <1,其中错误的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣4x﹣m2=0
(1)求证:该方程有两个不等的实根;
(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x
②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(
A.4+4﹣ =6
B.4+40+40=6
C.4+ =6
D.4﹣1÷ +4=6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算中,正确的是(
A.
B.(a23=a6
C.3a?2a=6a
D.32=﹣6

查看答案和解析>>

同步练习册答案