精英家教网 > 初中数学 > 题目详情

【题目】如图,直线与双曲线相交于点Am3),与x轴交于点C

1)求双曲线解析式;

2)点Px轴上,如果ACP的面积为3,求点P的坐标.

【答案】1;(220)或(﹣60).

【解析】试题分析:(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;

2)设Px0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.

解:(1)把Am3)代入直线解析式得:3=m+2,即m=2

A23),

A坐标代入y=,得k=6

则双曲线解析式为y=

2)对于直线y=x+2,令y=0,得到x=4,即C40),

Px0),可得PC=|x+4|

∵△ACP面积为3

|x+4|3=3,即|x+4|=2

解得:x=﹣2x=﹣6

P坐标为(﹣20)或(﹣60).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的长方形由两个这样的图形拼成,若,则该长方形的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“三等分任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规直尺是不可能做出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个任意角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,当AB=BE=EF时,有∠FAN=∠MAN,请你证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经过顶点的一条直线,分别是直线上两点,且

1)若直线经过的内部,且在射线上,请解决下面两个问题:

如图1,若

(填);

如图2,若,请添加一个关于关系的条件 ,使中的两个结论仍然成立,并证明两个结论成立.

2)如图3,若直线经过的外部,,请提出三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点BE是对应点),点F落在双曲线y=上,连结BE交该双曲线于点G.∠BAO=60°,OA=2GE,则k的值为 ________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°OD平分∠AOC,DOE=90°.

1)请你数一数,图中有______个小于平角的角;

2)求出∠BOD的度数;

3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,点EAD上,BCE=∠ACD=90°BAC=∠DBC=CE

(1)求证:AC=CD

(2)若AC=AE,求DEC的度数.

【答案】(1)证明见解析;(2)112.5°.

【解析】试题分析: 根据同角的余角相等可得到结合条件再加上 可证得结论;
根据 得到 根据等腰三角形的性质得到 由平角的定义得到

试题解析: 证明:

ABCDEC中,

2∵∠ACD90°ACCD

∴∠1D45°

AEAC

∴∠3567.5°

∴∠DEC180°5112.5°

型】解答
束】
21

【题目】一个零件的形状如图所示,工人师傅按规定做得∠B=90°

AB3BC4CD12AD13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观24个字是社会主义核心价值观的基本内容其中:

富强、民主、文明、和谐国家层面的价值目标

自由、平等、公正、法治社会层面的价值取向

爱国、敬业、诚信、友善公民个人层面的价值准则

小光同学将其中的文明和谐自由平等的文字分别贴在4张硬纸板上,制成如右图所示的卡片将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片

1小光第一次抽取的卡片上的文字是国家层面价值目标的概率是

2请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次

社会层面价值取向的概率卡片名称可用字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时间的变化情况,如图所示.

1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?

210时和11时,他分别离家多远?

3)他最初到达离家最远的地方是什么时间?离家多远?

411时到13时他行驶了多少千米?

查看答案和解析>>

同步练习册答案