精英家教网 > 初中数学 > 题目详情
y是关于x的正比例函数,当x=1时y=3,则y与x的函数关系式是
 
考点:待定系数法求正比例函数解析式
专题:计算题
分析:设y=kx,然后把对应值x=1,y=3代入求出k即可.
解答:解:设y=kx,
当x=1时,y=3,
所以k=3,
所以正比例函数解析式为y=3x.
答案为y=3x.
点评:本题考查了待定系数法求正比例函数的解析式:设正比例函数的解析式为y=kx(k≠0),然后把一组对应值代入求出k即可得到正比例函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知线段MN,请用直尺圆规作出等腰三角形△MNP.(其中,MN为底边,∠MNP=45°)

查看答案和解析>>

科目:初中数学 来源: 题型:

计算(a-2b-3a)2=(  )
A、4b2-8ba+4a2
B、4a2+8ab+4b2
C、-4a2-8ab-4b2
D、a2+2ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,点P(4,-3)关于原点对称的点的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.请完成第三步操作,则图中∠ABC被射线BQ和射线BP三等分.
(2)请你完成证明∠ABQ=∠QBP=∠PBC过程.
(3)在(1)的条件下探究:∠ABS=
1
3
∠ABC是否成立?如果成立,请说明理由;如果不成立,请在下图中∠ABC  的外部画出∠ABV=
1
3
∠ABC(无需写画法,保留画图痕迹即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

若代数式
x
x-1
有意义,则实数x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

化简求值:2(x2y+xy)-(x2y-xy)-4x2y,其中x=1,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式:
(1)6xy2-9x2y-y3
(2)x2-4(x-1)
(3)9(a+b)2-4(a-b)2
(4)a3b-ab3
(5)a4-16
(6)x2-2xy+y2-9.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(5+2
6
)2007•(2
6
-5)2008
=
 

查看答案和解析>>

同步练习册答案