精英家教网 > 初中数学 > 题目详情

【题目】如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段就是悬挂在墙壁上的某块匾额的截面示意图.已知米,.从水平地面点处看点,仰角,从点处看点,仰角.且米,求匾额悬挂的高度的长.(参考数据:

【答案】6.4

【解析】

过点CCNABCFAD,垂足为NF,先求出CNBN长,再求出AE0.75AB,根据BN+ABADAF得到关于AB的方程,求解即可.

解:过点CCNABCFAD,垂足为NF,如图所示:

RtBCN中,

(米),

(米)

RtABE中,∠ABE=90°-AEB=90°-53°=37°,

AEAB×tanABE =AB×tan37°0.75AB

∵∠ADC45°

CFDF

BN+ABADAF

即:1.6+AB0.75AB+4.41.2

解得,AB6.4(米)

答:匾额悬挂的高度AB的长约为6.4米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用表示,共分成四组:CD),下面给出了部分信息:

七年级10名学生的竞赛成绩是:998099869996901008982

八年级10名学生的竞赛成绩在组中的数据是:949094

八年级抽取的学生竞赛成绩扇形统计图:

七、八年级抽取的学生竞赛成绩统计表:

年级

七年级

八年级

平均数

92

中位数

93

94

众数

99

100

方差

52

50.4

根据以上信息,解答下列问题:

1)直接写出上述图表中的值;

2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);

3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀()的学生人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.

(1)求证:AG与⊙O相切.

(2)若AC=6,AB=8,BE=3,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年我市将创建全国森林城市,提出了共建绿色城的倡议.某校积极响应,在312日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,绘制了如图所示的两个不完整的统计图.

(1)求该校的班级总数;

(2)将条形统计图补充完整;

(3)求该校各班在这一活动中植树的平均数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线,经过两点的圆的圆心恰好落在上,分别与相交于点.若圆半径为2.则阴影部分面积( ).

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第_____个图形中圆和正三角形的个数相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线顶点A的坐标为(14),抛物线与x轴相交于BC两点,与y轴交于点E03).

1)求抛物线的表达式;

2)已知点F0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,点O是边AC的中点,分别过点AC作射线BO的垂线,EF是垂足.

  

1)如图1,求证:四边形AECF是平行四边形;

2)如图2,若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx22k1x+2

1)当k3时,求函数图象与x轴的交点坐标;

2)函数图象的对称轴与原点的距离为2,当﹣1x5时,求此时函数的最小值;

3)函数图象交y轴于点B,交直线x4于点C,设二次函数图象上的一点Pxy)满足0x4时,y2,求k的取值范围.

查看答案和解析>>

同步练习册答案