精英家教网 > 初中数学 > 题目详情

【题目】下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第_____个图形中圆和正三角形的个数相等

【答案】8

【解析】

根据前面3个图形的关系可以推出第n个图形由(2n+1)×4-4=8n个圆和个正三角形组成,代入可得结果

第①个图形由3×4-4=8个圆和1个正正三角形du组成,

第②个图形由5×4-4=16个圆和22=4个正三角形组成,

第③个图形由7×4-4=24个圆和32=9个正三角形组成,

所以第n个图形由(2n+1)×4-4=8n个圆和个正三角形组成,

∵圆和正三角形的个数相等,

∴8n=

解得n=8,或n=0(不合题意,舍去).

故答案是8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(模型介绍)

古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,∵直线是点的对称轴,点上,

(1)∴___________________,∴____________.在中,∵,∴,即最小.

(归纳总结)

在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点的交点,即三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.

(模型应用)

2)如图④,正方形的边长为4的中点,上一动点.求的最小值.

解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点关于直线对称,连结于点,则的最小值就是线段的长度,则的最小值是__________

3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_________

4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,则的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 边长为的正方形的对角线交于点 将正方形沿直线折叠, C落在对角线的点处,折痕于点,交于点,则的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段就是悬挂在墙壁上的某块匾额的截面示意图.已知米,.从水平地面点处看点,仰角,从点处看点,仰角.且米,求匾额悬挂的高度的长.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.

(1)求甲、乙两种树苗每棵的价格各是多少元?

(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为等腰斜边上的两点,.则

A.3B.C.4D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为,平行四边形的面积记为,的值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校决定加强毛球、篮球、乒乓球、排球、球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:

运动项目

频数(人数)

毛球

30

篮球

乒乓球

36

排球

12

根据以上图表信息解答下列问题:

(1)频数分布表中的

(2)在扇形统计图中,“排球”所在的扇形的圆心角为

(3)全校有多少名学生选择参加乒乓球运动?

查看答案和解析>>

同步练习册答案