【题目】(模型介绍)
古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,,,∵直线是点,的对称轴,点,在上,
(1)∴__________,_________,∴____________.在中,∵,∴,即最小.
(归纳总结)
在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点为与的交点,即,,三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.
(模型应用)
(2)如图④,正方形的边长为4,为的中点,是上一动点.求的最小值.
解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点与关于直线对称,连结交于点,则的最小值就是线段的长度,则的最小值是__________.
(3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_________.
(4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,,,则的最小值为____________.
【答案】(1),,;(2);(3)17;(4)
【解析】
(1)根据对称性即可求解;
(2)根据正方形的对称性知B关于AC的对称点是D,连接ED,则ED是的最小值;
(3)先将玻璃杯展开,再根据勾股定理求解即可;
(4)分析知:当与垂直时,值最小,再根据特殊角计算长度即可;
解:(1)根据对称性知:,
故答案为:,,;
(2)根据正方形的对称性知B关于AC的对称点是D,连接ED
∴ED是的最小值
又∵正方形的边长为4,E是AB中点
∴
∴的最小值是;
(3)由图可知:蚂蚁到达蜂的最短路程为 的长度:
∵
∴
∴
(4)∵在边长为2的菱形ABCD中,,将沿射线的方向平移,得到
∴
当与垂直时,值最小
∵
∴四边形是矩形,
∴
∴
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,点的坐标为,抛物线经过两点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上的一点,过点作轴于点,交线段于点,使.
①求点的坐标和的面积;
②在直线上是否存在点,使为直角三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.
(1)求证:△FED∽△AEB;
(2)若=,AC=2,连接CE,求AE的长;
(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=﹣的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.
(1)求点C的坐标及k、b的值.
(2)求出一次函数图象与反比例函数图象的另一个交点的坐标,并直接写出当时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用表示,共分成四组:..C.D.),下面给出了部分信息:
七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82
八年级10名学生的竞赛成绩在组中的数据是:94,90,94
八年级抽取的学生竞赛成绩扇形统计图:
七、八年级抽取的学生竞赛成绩统计表:
年级 | 七年级 | 八年级 |
平均数 | 92 | |
中位数 | 93 | 94 |
众数 | 99 | 100 |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中的值;
(2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀()的学生人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于、,连接,已知.
(1)求证:为⊙的切线;
(2)已知,填空:
①当__________时,四边形是菱形;
②若,当__________时,为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客万人,四月比三月旅游人数增加了,五月比四月游客人数增加了,已知三月至五月徽园的游客人数平均月增长率为,则可列方程为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数=(≠0)图象如图所示,下列结论:①>0;②=0;③当≠1时,>;④>0;⑤若=,且≠,则=2.其中正确的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第_____个图形中圆和正三角形的个数相等 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com