精英家教网 > 初中数学 > 题目详情

【题目】(模型介绍)

古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,∵直线是点的对称轴,点上,

(1)∴___________________,∴____________.在中,∵,∴,即最小.

(归纳总结)

在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点的交点,即三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.

(模型应用)

2)如图④,正方形的边长为4的中点,上一动点.求的最小值.

解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点关于直线对称,连结于点,则的最小值就是线段的长度,则的最小值是__________

3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_________

4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,则的最小值为____________

【答案】1;(2;(317;(4

【解析】

1)根据对称性即可求解;

2)根据正方形的对称性知B关于AC的对称点是D,连接ED,则ED的最小值;

3)先将玻璃杯展开,再根据勾股定理求解即可;

4)分析知:当垂直时,值最小,再根据特殊角计算长度即可;

解:(1)根据对称性知:

故答案为:

2)根据正方形的对称性知B关于AC的对称点是D,连接ED

ED的最小值

正方形的边长为4EAB中点

的最小值是

3)由图可知:蚂蚁到达蜂的最短路程为 的长度:

4)∵在边长为2的菱形ABCD中,,将沿射线的方向平移,得到

垂直时,值最小

∴四边形是矩形,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,点的坐标为,抛物线经过两点.

1)求抛物线的解析式;

2)点是直线上方抛物线上的一点,过点轴于点,交线段于点,使

求点的坐标和的面积;

在直线上是否存在点,使为直角三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接ABC中,∠CAB90°AB2AC,过点ABC的垂线m交⊙O于另一点D,垂足为H,点E上异于AB的一个动点,射线BE交直线m于点F,连接AE,连接DEBC于点G

1)求证:FED∽△AEB

2)若AC2,连接CE,求AE的长;

3)在点E运动过程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与x轴,y轴分别相交于AB两点,且与反比例函数y=﹣的图象在第二象限交与点C,如果点A为的坐标为(20),BAC的中点.

1)求点C的坐标及kb的值.

2)求出一次函数图象与反比例函数图象的另一个交点的坐标,并直接写出当时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用表示,共分成四组:CD),下面给出了部分信息:

七年级10名学生的竞赛成绩是:998099869996901008982

八年级10名学生的竞赛成绩在组中的数据是:949094

八年级抽取的学生竞赛成绩扇形统计图:

七、八年级抽取的学生竞赛成绩统计表:

年级

七年级

八年级

平均数

92

中位数

93

94

众数

99

100

方差

52

50.4

根据以上信息,解答下列问题:

1)直接写出上述图表中的值;

2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);

3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀()的学生人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于,连接,已知

1)求证:为⊙的切线;

2)已知,填空:

①当__________时,四边形是菱形;

②若,当__________时,为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客万人,四月比三月旅游人数增加了,五月比四月游客人数增加了,已知三月至五月徽园的游客人数平均月增长率为,则可列方程为(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数≠0)图象如图所示,下列结论:00≠1时,0,且,则2.其中正确的有( )

A. ①②③ B. ②④ C. ②⑤ D. ②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第_____个图形中圆和正三角形的个数相等

查看答案和解析>>

同步练习册答案