8£®Èçͼ¢Ù£¬ÒÑÖªµãA£¨-3£¬0£©£¬¶Ô³ÆÖáΪx=$\frac{5}{2}$µÄÅ×ÎïÏßy=$\frac{2}{3}{x^2}$+bx+cÒÔyÖá½»ÓÚµãB£¨0£¬4£©£¬ÒÔxÖá½»ÓÚµãD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýµãB×÷BC¡ÎxÖá½»Å×ÎïÏßÓÚµãC£¬Á¬½ÓDC£®ÅжÏËıßÐÎABCDµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èçͼ¢Ú£¬¶¯µãE£¬F·Ö±ð´ÓµãA£¬Cͬʱ³ö·¢£¬Ô˶¯ËٶȾùΪ1cm/s£¬µãFÑØACÔ˶¯£¬µ½¶Ô½ÇÏßACÓëBDµÄ½»µãMÍ£Ö¹£¬´ËʱµãEÔÚADÉÏÔ˶¯Ò²Í£Ö¹£®ÉèÔ˶¯Ê±¼äΪt£¨s£©£¬¡÷BEFµÄÃæ»ýΪS£¨cm2£©£®ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£®

·ÖÎö £¨1£©ÓÉA£¨-3£¬0£©£¬¶Ô³ÆÖáΪx=$\frac{5}{2}$£¬B£¨0£¬4£©µÃ·½³Ì×飬Çó½â¼´¿É£»
£¨2£©ËıßÐÎABCDÊÇÁâÐΣ®ÏÈÇó³öµãD¡¢CµÄ×ø±ê£¬ÒÑÖªA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨0£¬4£©£¬Çó³öÏß¶ÎAB¡¢BC¡¢ADµÄ³¤£¬·¢ÏÖAD=BC£¬AD¡ÎBC£¬µÃËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬ÓÖAB=BC£¬ËùÒÔËıßÐÎABCDÊÇÁâÐΣ®
£¨3£©ÏÈÇó³öBD¡¢AC£¬ÔÙÁâÐÎÐÔÖʵÃBD¡ÍAC£¬BM=DM=$\frac{1}{2}$BD=$\sqrt{5}$£¬ÉèAE=t£¬CF=t£¬ÔòAF=$4\sqrt{5}$-t£¬¹ýµãE×÷EH¡ÍACÓÚµãH£¬Ò×Ö¤¡÷AEH¡×¡÷ADM£¬ÁбÈÀýʽÇó³öEH£¬¸ù¾ÝS¡÷BEF=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-SËıßÐÎEDCF£¬ÁгöSÓëtµÄº¯Êý¹ØÏµÊ½£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}c=4\\-\frac{b}{{2¡Á\frac{2}{3}}}\end{array}\right.=\frac{5}{2}$£¬½âµÃ$\left\{\begin{array}{l}c=4\\ b=-\frac{10}{3}\end{array}\right.$
¡àÅ×ÎïÏߵĽâÎöʽΪ$y=\frac{2}{3}{x^2}-\frac{10}{3}x+4$£®
£¨2£©ËıßÐÎABCDÊÇÁâÐΣ®Èçͼ¢Ù£¬
ÀíÓÉ£º¡ßµ±y=0ʱ£¬$\frac{2}{3}{x^2}-\frac{10}{3}x+4=0$£¬½âµÃ£ºx1=-3£¬x2=2£¬
¡àµãDΪ£¨2£¬0£©£®
¡ßµ±y=4ʱ£¬$\frac{2}{3}{x^2}-\frac{10}{3}x+4=4$£¬½âµÃ£ºx1=0£¬x2=5£¬
¡àµãCΪ£¨5£¬4£©£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡   ¡¡                     
¡ßA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨0£¬4£©£¬
¡àBC=AD=5£®
¡ßBC¡ÎAD£¬
¡àËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
ÔÚRt¡÷AOBÖУ¬¡ÏAOB=90¡ã£¬
¡àAB=$\sqrt{{3^2}+{4^2}}$=5£®
¡àAB=AD£®
¡à?ABCDÊÇÁâÐΣ®
£¨3£©Èçͼ¢Ú£¬
ÓɵãB£¨0£¬4£©£¬µãD£¨2£¬0£©£¬¿ÉµÃBD=$2\sqrt{5}$£®
ÓɵãA£¨-3£¬0£©£¬µãC£¨5£¬4£©£¬¿ÉµÃAC=$4\sqrt{5}$£®
ÔÚÁâÐÎABCDÖУ¬
BD¡ÍAC£¬BM=DM=$\frac{1}{2}$BD=$\sqrt{5}$£®
ÓÉÌâÒ⣬֪AE=t£¬CF=t£¬AF=$4\sqrt{5}$-t£® 
¹ýµãE×÷EH¡ÍACÓÚµãH£®
¡àEH¡ÎBD£®
¡à¡÷AEH¡×¡÷ADM£®
¡à$\frac{EH}{DM}=\frac{AE}{AD}$£¬¼´£º$\frac{EH}{{\sqrt{5}}}=\frac{t}{5}$£®
½âµÃ$EH=\frac{{\sqrt{5}}}{5}t$£®
¡àS¡÷BEF=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-SËıßÐÎEDCF
=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-£¨S¡÷ADC-S¡÷AEF£©
=$5¡Á4-\frac{1}{2}¡Á4t-\frac{1}{2}¡Á\sqrt{5}t-[{\frac{1}{2}¡Á4\sqrt{5}¡Á\sqrt{5}-\frac{1}{2}¡Á£¨{4\sqrt{5}-t}£©¡Á\frac{{\sqrt{5}}}{5}t}]$
=$-\frac{{\sqrt{5}}}{10}{t^2}-\frac{{\sqrt{5}}}{2}t+10$£®
¼´SÓëtµÄº¯Êý¹ØÏµÊ½Îª£ºS=$-\frac{{\sqrt{5}}}{10}{t^2}-\frac{{\sqrt{5}}}{2}t+10$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó½âÎöʽ¡¢ÁâÐεÄÅж¨ÓëÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíÒÔ¼°¸ù¾ÝÃæ»ýÁк¯Êý±í´ïʽ£¬´ËÌâ×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨ÄѶȣ¬µÚÈýСÌâÊÇÄѵ㣬¹Ø¼üÊÇÕÒµ½¡÷BEFÃæ»ýµÄ·Ö½â·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬¡÷ABCµÄÃæ»ýΪ3£¬BD£ºDC=2£º1£¬EÊÇACµÄÖе㣬ADÓëBEÏཻÓÚµãP£¬ÄÇôËıßÐÎPDCEµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{7}{10}$C£®$\frac{3}{5}$D£®$\frac{13}{20}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬$\frac{AB}{BC}=\frac{3}{5}$£¬ÒÔµãBΪԲÐÄ£¬BC³¤Îª°ë¾¶»­»¡£¬½»±ßADÓÚµãE£®ÈôAE•ED=8£¬Ôò¾ØÐÎABCDµÄÃæ»ýΪ30£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª£ºÈçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬µãCÔÚ¡ÑOÉÏ£¬¡÷ABCµÄÍâ½Çƽ·ÖÏßBD½»¡ÑOÓÚµãD£¬DE¡ÍCBµÄÑÓ³¤ÏßÓÚµãE£®
£¨1£©ÇóÖ¤£ºDEΪ¡ÑOµÄÇÐÏߣ»
£¨2£©Èô¡ÏA=30¡ã£¬BE=3£¬·Ö±ðÇóÏß¶ÎDEºÍ$\widehat{BD}$µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚ?ABCDÖУ¬¶Ô½ÇÏßAC¡¢BDÏཻ³ÉµÄÈñ½Ç¦ÁΪ60¡ã£¬ÈôAC=10£¬BD=8£¬Ôò?ABCDµÄÃæ»ýÊÇ20$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®²»µÈʽ2£¨x-1£©¡ÝxµÄ½â¼¯ÔÚÊýÖáÉϱíʾΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êýy=$\frac{x-1}{2x+6}$ÖУ¬×Ô±äÁ¿xµÄȡֵ·¶Î§ÊÇx¡Ù-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô²»µÈʽ×é$\left\{\begin{array}{l}{-2x+4¡Ý0}\\{x£¾a}\end{array}\right.$£¨xΪδ֪Êý£©Î޽⣬Ôò¶Ô¶þ´Îº¯Êýy=ax2-2x+1µÄͼÏóµÄÏÂÁÐÐðÊö£º
£¨1£©¿ª¿ÚÏòÉÏ£»£¨2£©ÓëxÖáûÓн»µã£»£¨3£©¶¥µãÔÚµÚ¶þÏóÏÞ£»£¨4£©µ±x£¾-$\frac{1}{2}$ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£®
ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÒÑÖª¶þ´Îº¯ÊýL1£ºy=ax2-2ax+a+3£¨a£¾0£©ºÍ¶þ´Îº¯ÊýL2£ºy=-a£¨x+1£©2+1£¨a£¾0£©Í¼ÏóµÄ¶¥µã·Ö±ðΪM£¬N£¬ÓëyÖá·Ö±ð½»ÓÚµãE£¬F£®
£¨1£©º¯Êýy=ax2-2ax+a+3£¨a£¾0£©µÄ×îСֵΪ3£¬µ±¶þ´Îº¯ÊýL1£¬L2µÄyÖµÍ¬Ê±Ëæ×ÅxµÄÔö´ó¶ø¼õСʱ£¬xµÄȡֵ·¶Î§ÊÇ-1¡Üx¡Ü1£®
£¨2£©µ±EF=MNʱ£¬ÇóaµÄÖµ£¬²¢ÅжÏËıßÐÎENFMµÄÐÎ×´£¨Ö±½Óд³ö£¬²»±ØÖ¤Ã÷£©£®
£¨3£©Èô¶þ´Îº¯ÊýL2µÄͼÏóÓëxÖáµÄÓÒ½»µãΪA£¨m£¬0£©£¬µ±¡÷AMNΪµÈÑüÈý½ÇÐÎʱ£¬Çó·½³Ì-a£¨x+1£©2+1=0µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸